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Abstract

Analyzing the inner mechanisms of deep neural networks is
a fundamental task in machine learning. Existing work pro-
vides limited analysis or it depends on local theories, such
as fixed-point analysis. In contrast, we propose to analyze
trained neural networks using an operator theoretic approach
which is rooted in Koopman theory, the Koopman Analysis of
Neural Networks (KANN). Key to our method is the Koopman
operator, which is a linear object that globally represents the
dominant behavior of the network dynamics. The linearity of
the Koopman operator facilitates analysis via its eigenvectors
and eigenvalues. Our method reveals that the latter eigende-
composition holds semantic information related to the neural
network inner workings. For instance, the eigenvectors high-
light positive and negative n-grams in the sentiments analysis
task; similarly, the eigenvectors capture the salient features of
healthy heart beat signals in the ECG classification problem.

Introduction

Understanding the inner workings of predictive models is an
essential requirement in many fields across science and en-
gineering. This need is even more important nowadays with
the emergence of neural networks whose visualization and
interpretation is inherently challenging. Indeed, modern com-
putational neural models often lack a commonly accepted
knowledge regarding their governing mathematical princi-
ples. Consequently, while deep neural networks may achieve
remarkable results on various complex tasks, explaining their
underlying decision mechanisms remains a challenge. The
goal of this paper is to help bridge this gap by proposing a
new framework for the approximation, reasoning, and under-
standing of sequence neural models.

Sequence models are designed to handle time series data
originating from images, text, audio, and other sources of
information. One approach to analyzing sequence neural
networks is through the theory and practice of dynamical
systems (Doya 1993a; Pascanu, Mikolov, and Bengio 2013).
For instance, the temporal asymptotic behavior of a dynam-
ical system can be described using the local analysis of its
attractor states (Strogatz 2018). Similarly, recurrent models
have been investigated in the neighborhood of their fixed
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points (Sussillo and Barak 2013), leading to work that in-
terprets trained RNNs for tasks such as sentiment analysis
(Maheswaranathan et al. 2019).

However, the local nature of these methods is a limiting
factor which may lead to inconsistent results. Specifically,
their approach is based on fixed-point analysis which allows
to study the dynamical system in the neighborhood of a fixed-
point. In contrast, our approach is global—it does not depend
on a set of fixed-points, and it facilitates the exploration of
the dynamics near and further away from fixed points.

Over the past few years, a family of data-driven meth-
ods was developed, allowing to analyze complex dynamical
systems based on Koopman theory (1931). These methods
exploit a novel observation by which nonlinear systems may
be globally encoded using infinite-dimensional but linear
Koopman operators. In practice, Koopman-based approaches
are lossy as they compute a low-rank approximation of the
full operator. Nevertheless, it has been shown in the fluid
dynamics (Mezi¢ 2005; Azencot et al. 2020) and geometry
processing (Ovsjanikov et al. 2012; Sharma and Ovsjanikov
2020) communities that the dominant features of general non-
linear dynamical systems can be captured via a single matrix
per system, allowing e.g., to forecast dynamics (Azencot,
Yin, and Bertozzi 2019; Cohen et al. 2021), and to align time
series data (Rahamim and Talmon 2021). Thus, we pose the
following research question: can we design and employ a
Koopman-based approach to analyze and develop a funda-
mental understanding of deep neural models?

Given a trained sequence neural network and a procedure
to extract its hidden states, our Koopman-based method gen-
erates a moderate size matrix which faithfully describes the
dynamics in the latent space. Unlike existing work, our ap-
proach is global and independent of a particular latent sample,
and thus it can be virtually applied to any hidden state. A key
advantage of our framework is that we can directly employ
linear analysis tools on the approximate Koopman operator to
reason about the associated neural network. In particular, we
show that the eigenvectors and eigenvalues of the Koopman
matrix are instrumental for understanding the decision mech-
anisms of the model. For instance, we show in our results that
the dominant eigenvectors carry crucial semantic knowledge
related to the problem at hand. Koopman-based methods such
as ours are backed by rich theory and practice, allowing us to
exploit the recent advances in Koopman inspired techniques



for the purpose of developing a comprehensive understanding
of sequence neural networks. Thus, the key contribution in
this work is the novel application of Koopman-based meth-
ods for understanding sequential models, and the extraction
of high-level interpretable and insightful understandings on
the trained networks.

We focus our investigation on two learning tasks: sentiment
analysis and electrocardiogram (ECG) classification. We will
identify four eigenvectors in the sentiment analysis model
whose roles are to highlight: positive words, negative words,
positive pairs (e.g., “not bad”), and negative pairs. In addition,
we demonstrate that the eigenvectors in the ECG classifica-
tion task naturally identify dominant features in normal beat
signals and encode them. Specifically, we show that four
Koopman eigenvectors accurately capture the local extrema
points of normal beat signals. These extrema points are funda-
mental in deciding whether a signal is normal or anomalous.
Our results reinforce that the network indeed learns a robust
representation of normal beat signals. Then, we will verify
that the main components of the nonlinear network dynamics
can be described using our Koopman matrices by measuring
the difference in accuracy results, and the relative error in
predicted states. Further, we provide additional results and
comparisons in the supplementary material. Given the versa-
tility of our framework and its ease of use, we advocate its
utility in the analysis and understanding of neural networks,
and we believe it may also affect the design and training of
deep models in the future. Code to reproduce our results is
available at https://github.com/azencot-group/KANN.

Related Work

Recurrent Neural Networks and Dynamical Systems.
Fully connected recurrent neural networks are universal ap-
proximators of arbitrary dynamical systems (Doya 1993b).
Unfortunately, RNNs are well-known to be difficult to
train (Bengio, Frasconi, and Simard 1993; Pascanu, Mikolov,
and Bengio 2013), and several methods use a dynamical sys-
tems view to improve training via gradient clipping (Pascanu,
Mikolov, and Bengio 2013), and constraining weights (Erich-
son et al. 2021; Azencot et al. 2021), among other approaches.
Overall, it is clear that dynamical systems are fundamental
in investigating and developing recurrent networks.

Understanding RNN. Establishing a deeper understanding
of recurrent networks is a long standing challenge in machine
learning. To this end, Karpathy, Johnson, and Fei-Fei (2015)
follow the outputs of the model to identify units which track
brackets, line lengths, and quotes. Recently, Chefer, Gur, and
Wolf (2020) proposed an approach for computing relevance
scores of transformer networks. Perhaps mostly related to
our approach is the analysis of recurrent models around their
fixed points (Sussillo and Barak 2013). This approach re-
vealed low-dimensional attractors in the sentiment analysis
task (Maheswaranathan et al. 2019), which allowed to de-
duce simple explanations of the decision mechanisms. Our
work generalizes the approach of Sussillo and Barak (2013)
in that it yields global results about the dynamics, and it in-
troduces several novel features. We provide a more detailed
comparison between our method and theirs in Results.

Koopman-based Neural Networks. Recently, several tech-
niques that combine neural networks and Koopman theory
were proposed, mostly in the context of predicting nonlin-
ear dynamics. For example, Takeishi, Kawahara, and Yairi
(2017); Morton et al. (2018) optimize the residual sum of
squares of the predictions the operator makes, Lusch, Kutz,
and Brunton (2018); Erichson, Muehlebach, and Mahoney
(2019); Azencot et al. (2020) design dynamic autoencoders
whose central component is linear and may be structured, Li
et al. (2020) employ graph networks, and Mardt et al. (2018)
use a variational approach on Markov processes. A recent
line of work aims at exploiting tools from Koopman theory
to analyze and improve the training process of neural net-
works (Dietrich, Thiem, and Kevrekidis 2020; Dogra and
Redman 2020; Manojlovi¢ et al. 2020). To the best of our
knowledge, our work is first to employ a Koopman-based
method towards the analysis and understanding of trained
neural networks.

Method

In what follows, we present our method for analyzing and
understanding sequence neural models. Importantly, while
we mostly discuss and experiment with recurrent neural net-
works, our approach is quite general and applicable to any
model whose inner representation is a time series. We con-
sider neural models that take input instances z; € R at time
t and compute

ht :F(htflv xt) ) t:1727 ’ (1)
where h; € R” is a (hidden) state that represents the latent
dynamics, and F'is some nonlinear function that pushes states
through time. In our analysis, we use only the hidden states
set and discard the time series input. Thus, our method is a
“white-box” approach as we assume access to {h}, which is
typically possible in most day-to-day scenarios. Importantly,
all recurrent models including vanilla RNN (Elman 1990),
LSTM (Hochreiter and Schmidhuber 1997), and GRU (Cho
et al. 2014), as well as Attention Models (Bahdanau, Cho,
and Bengio 2015; Vaswani et al. 2017), and Residual neural
networks (He et al. 2016) exhibit the structure of Eq. (1).

Essentials of Koopman Theory

Our approach is based on Koopman (1931) theory which was
developed for dynamical systems. The key observation of
Koopman was that a finite-dimensional nonlinear dynamics
can be fully represented using an infinite-dimensional but
linear operator. While the theoretical background is essen-
tial for developing a deep understanding of Koopman-based
approaches, the practical aspects are more important to this
work. Thus, we briefly recall the definition of the Koopman
operator, and we refer the reader to other, comprehensive
works on the subject (Singh and Manhas 1993; Eisner et al.
2015). Formally, we assume a discrete-time dynamical sys-
tem ( acting on a compact, inner-product space M C R™,

ziv1 =@(zt), zmeM, t=1,2 .., 2)

where ¢ is an integer index representing discrete time. The
dynamics ¢ induces a linear operator K, which we call the



Koopman operator, and it is given by

Kof(zt) == f(2t41) = fop(zt) , 3)

where f : M — R is a scalar function in a bounded inner
product space F. It is easy to show that /C,, is linear due to the
linearity of composition, i.e., given o, 8 € Rand f,g € F,
we obtain that Ko (af + 8g) = (af + 8g) o ¢ = af o
w4 Bgop=aK,(f)+ BK,(g). We emphasize that while
 describes the system evolution, Ky, is a transformation
on the space of functions. From a practical viewpoint, these
functions may be interpreted as observations of the system,
such as velocity, sea level, temperature, or hidden states.

To justify our use of Koopman theory and practice in the
context of neural networks, we propose the following. We
interpret the input sequence {x;} as governed by some com-
plex and unknown dynamics ¢, i.e., xt11 = () for every
t. We emphasize that ¢ is different from F' in Eq. (1) by its
definition of domain and range. Then, the hidden states h;
are finite samplings of observations of the system, namely,
ht ~ f; where f; : M — R is the true observation. For
instance, f; may be the smooth function cos(tz), whereas
hs € RF is its sampling at a finite set of points {z1, ..., zx}.
It follows that {h;} is subject to an approximate Koopman
representation. However, a fundamental challenge in facilitat-
ing Koopman theory in practice is the infinite-dimensionality
of K. Recently, several data-driven methods were developed
to produce a better approximate K, using a moderate-size
matrix C' (Schmid 2010; Ovsjanikov et al. 2012). In partic-
ular, Koopman-based approaches have been proven instru-
mental in the analysis of fluid dynamics data (Brunton et al.
2021), and for computing complex nonrigid isometric maps
between shapes (Ovsjanikov et al. 2016). Motivated by these
empirical examples and their success, we will compute in
this work approximate Koopman operator matrices C' such
that they encode the evolution of latent states {h;}.

A Koopman-Based Method

We denote by H € R**"*¥ a tensor of hidden state se-
quences, where s is the batch size, n is the sequence length
and k is the hidden dimension. The method we employ for
computing the matrix C' follows two simple steps: 1. Rep-
resent the states using a basis B, and denote the resulting
collection of spectral coefficients by H. 2. Find the best lin-
ear transformation C' which maps H; to Hy; in the spectral
domain, where i, € R?® xk denotes the tensor of coefficients
from H at time 7. To give a specific example of the gen-
eral procedure we just described, we can choose the principal
components b;, 7 = 1,2, ... of the truncated SVD of the states
H to be the basis in the first step. Then, the resulting basis
elements are orthonormal, i.e., BT B = Id, where B = (b;)
is the matrix of basis elements organized in its columns, and
Id is the identity matrix. The matrix C' is obtained by solving
the following least squares minimization

n—1 B ~ ~ 2
C = i ’H O = Hy| 4
argé*nm; ¢ L 4
H,=H, B, Vr, 5)

where - is matrix multiplication. We note that the above
scheme is a variant of the dynamic mode decomposi-
tion (Schmid 2010), and the functional maps (Ovsjanikov
et al. 2012) algorithms.

Koopman-Based Prediction

The infinite-dimensional Koopman operator in Eq. (3) de-
scribes the evolution of observable functions subject to the
dynamics . Similarly, our C' matrices allow us to predict a
future hidden state h;4; from a given current state h; simply

by multiplying C' with the spectral coefficients h;. Namely,
oMW .=H,-B-C-B". (6)

We will mostly use Eq. (6) to evaluate the validity of C' in
encoding the underlying dynamics based on the differences
|HEMWN — H, |2 /| Hy|% for every admissible ¢, see Results.

Koopman-Based Analysis

The key advantage of Koopman theory and practice is that
linear analysis tools can be directly applied to study the
behavior of the underlying dynamical system. The tools we
describe next form the backbone of our analysis framework,
and our results are heavily based on these tools.

Separable dynamics. If C € R*** admits an eigende-
composition, then the dynamics can be represented in a fully
separable manner, where the eigenvectors of C' propagate
along the dynamics independently of the other eigenvectors,
scaled by their respective eigenvalues. Formally, we consider
the eigenvalues \; € C and eigenvectors v; € Ckof C,ie.,
it holds that C'v; = Ajv;. We assume that C'is full-rank and
thus V' = (v;) forms a basis of R, and similarly, U = V!
is also a spanning basis. In our setting, we call the rows of
U the Koopman eigenvectors, and we represent any hidden
state h; in this basis, similarly to Eq. (5). The projection of
H onto U reads

H.:=H,-B-V=H,-V. (7

Then, re-writing Eq. (6) using the eigendecomposition of
C = V - AU yields the temporal trajectory of H; via
H., =H,  -B-V~H -B-C-V=H,-B-V-A=
fIt - A, where A is the diagonal matrix of eigenvalues, and the
approximation is due to Eq. (6). The latter derivation yields

Hyp~Hy A, (3)

i.e., the linear dynamics matrix represented in the basis U
is simply the diagonal matrix A, and thus U may be viewed
as a “natural” basis for encoding the dynamics. Further, it
directly follows that ﬁt_H = ﬁt - A!, that is, the number of
steps forward is determined by the eigenvalues power.

Results

In this study, we focus our exploration on the sentiment
analysis and the ECG classification problems. Unless noted
otherwise, we always compute C' using our Koopman-based
method, where the basis is given by the truncated SVD modes



of the input hidden states, and C is the least squares estima-
tion obtained from solving (4). We first provide our qualita-
tive analysis, and then, we include a quantitative evaluation
of KANN and its ability to encode the dynamics. In Apps. A,
B, D, and E, we provide additional results, and we show that
our method is robust to the choice of basis and network ar-
chitecture. Finally, we further use KANN to analyze the copy
problem in App. F, where our results outperform the baseline
approach (Maheswaranathan et al. 2019).

Sentiment Analysis

We begin our qualitative study by considering the senti-
ment analysis task which was extensively explored in (Ma-
heswaranathan et al. 2019; Maheswaranathan and Sussillo
2020). Determining the sentiment of a document is an impor-
tant problem which may be viewed as a binary classification
task. We will use the IMDB reviews dataset, and we will
embed the corpus of words to obtain a vector representation
of text. Given a review, the role of the network is to output
whether it reflects a positive or negative opinion. Adopting
the setup of Maheswaranathan et al. (2019), we use a word
embedding of size 128, and a GRU recurrent layer with a
hidden size of 256. We train the model for 5 epochs dur-
ing which it reaches an accuracy of ~ 92%, 87%, 87% on
the train, validation and test sets, respectively. For analysis,
we extract a random test batch of 64 reviews and its states
H ¢ R64x1000x256 \where 1000 is the review length when
padded with zeros.

One of the main results in (Maheswaranathan et al. 2019)
was the observation that the dynamics of the network span
a line attractor. That is, the hidden states of the network are
dominantly attracted to a one dimensional manifold, split-
ting the domain into positive and negative sentiments. Ad-
ditionally, Maheswaranathan and Sussillo (2020) study in-
puts with contextual relations (e.g., the phrase “not bad”),
and their effect on the network dynamics. Our results align
with the observations in (Maheswaranathan et al. 2019; Mah-
eswaranathan and Sussillo 2020). Moreover, we generalize
their results by showing that the attracting manifold is in
fact of a higher dimension, and that the manifold can be de-
composed to semantically understandable components using
KANN. Specifically, we demonstrate that several Koopman
eigenvectors are important in the dynamics, and we can link
each of these eigenvectors to a semantically meaningful ac-
tion. Thus, in comparison to the framework proposed in (Ma-
heswaranathan et al. 2019; Maheswaranathan and Sussillo
2020), our method naturally decomposes the latent manifold
into interpretable attracting components. In addition, we pro-
vide a unified framework for reasoning and understanding
by drawing conclusions directly from the separable building
blocks of the latent dynamics.

Most of our results for the sentiment analysis problem are
based on the eigendecomposition of C, its resulting eigenval-
ues {)\; € C} and corresponding eigenvectors {u; € CF}.
For the random states batch H specified above, we obtain an
operator C' whose spectrum consists of four eigenvalues with
modulus greater than 0.99, i.e., |A;| > 0.99. In comparison,
Maheswaranathan et al. (2019) identify only a single dom-
inant component. The values of our A\; read A; = 0.9999.

A2 = 0.9965, and A3 4 = 0.9942 £ 40.0035. Consequently,
their respective eigenvectors have long memory horizons.
Namely, if |A;| ~ 1, these eigenvectors carry information
across long word sequences. Otherwise, if |)\j| < 1, then its
powers decay exponentially to zero.

In their analysis, the authors of (Maheswaranathan et al.
2019) observe that the network mainly counts positive vs. neg-
ative words in a review along a line attractor. We hypothesize
that in our setting, the dominant eigenvectors {u, ..., uq } are
responsible for this action. To verify our hypothesis, we use
the readout (linear) layer of the model to generate the logits
of the state when projected to Uy and Usy. We denote by 12
and ys4 the logits for H - V15 and H - Va4, respectively, where
Vij denote the 4 and j columns of V. For the above test batch,
we get perfect correspondence, i.e., 12 < .5 and 34 > .5 on
all samples. In addition to encoding a certain sentiment, the
Koopman eigenvectors are advantageous in comparison to a
single line attractor as they allow for a direct visualization of
the importance of words in a review. Specifically, we define
the projection magnitude of a hidden state as follows

s(j, he) = iLt(J)‘ =

We show in Fig. 1 two examples where the magnitude of
projection onto U;2 and Usy clearly highlights positive and
negative words, respectively. In particular, as the network
“reads” the review and identifies e.g., a negative word, it in-
creases s(-). For instance, see mess and muddled in Fig. 1.
Importantly, there may be occurrences of positive/negative
n-grams which are not highlighted, such as the word good
in the positive example. We show in App. A that the above
results extend to the entire test set. Thus, we conclude that
{u1, ..., uq} track positive and negative words.

In addition to {u, ..., us }, we also want to understand how
other eigenvectors affect the latent dynamics. We hypothesize
that other vectors are responsible to track contextual infor-
mation such as amplifiers (“extremely good”) and negations
(“not bad”’). We collected all reviews that include the phrases
“not bad” and “not good” into a single batch, yielding a states
tensor with 256 samples. One way to check our hypothesis
is to employ the former visualization using other eigenvec-
tors. We show two such examples in Fig. 1 in green, where
phrases such as “not bad”, “terribly wrong”, and “quite ok”
are highlighted when projected onto ug. We provide addi-
tional results and analysis on the identification of amplifier
words and negations using KANN in App. A. To better visu-
alize the importance of the Koopman eigenvectors and their
ordering, we projected the batch on the eigenvectors and
sorted the values of Eq. (9) from high to low when summed
over time and averaged over batch. In App. B, the resulting
graph shows a hierarchical behavior, where each group of
eigenvectors have a different role. We consider in App. B the
general case of n-grams where n > 2.

RV - ©

ECG Classification

Electrocardiogram (ECG) tests track the electrical activity
in the heart, and they help detect various abnormalities in a
non-invasive way. Classifying whether a beat is normal or not
is a challenging task which lacks descriptive neural models.



A positive review projected onto {uy, us}:

watched this on k # # q # #ed , with frank baxter comment ing # #
as i recall # # have never seen it since, but would I i ke to
find out where it is available. ##<br / ><br />0t i s amazing
h ow good something can b e but b e in bl ack and white, and h
ave zero special ef fects . in fact, amazing how much better s
omething i ke t hat i s !
A negative review projected onto {us, uy}:
what a me s s o f a movie! i f it wasnt for eric roberts and s us
an sarandon ## ' s performances , ## t his mo v i e wou |l d b e a tota
| waste # # ! a very muddlIl ed plot and phony dialogue. ##er ic r
oberts debut. ## .. ##where did h i s career go from this mo v i
E on? ##now ##here but down !
Two reviews with contextual information projected onto {ug}:
this a fantastic mo v ie o f three prisoners w h o become famous .
one o f t he actors i s georage clooney and i 'm not a fan but t
his roll is |nloltl JBNENEENanother (good Ehing about the movie is ¢
h e soundtrack (the man o f constant sorrow ##). i re ## com ##
ma n # # d this m i e to everybody. greetings bart
this i s a rip-off o f already crappy hol |l ywood movies I i ke s ¢
ream and i know what y ou did | ast summer . t he story i s cl ass
i c, s ome high=-school students tries a prank on t he cl ass # #
as ##th ##matic misfit but something goes wrong. [N
rong . when y ou watch t he mov i e y ou know what ## 0| happen b e
fore it happens a l | t he time, not good i f a mov i e tries t o b
e scary t he actors are quite o k and t he girls are cute (aft
er al |, they re asian # # ) s o it give it two out o f five on
t he m o # #j a ## v e # # # # o ##me t ##er .

Figure 1: We display reviews where each word is shaded based on ) j s(j, ht). Projecting onto U5 shows an increase in
magnitude for several positive words (blue), whereas projecting onto Us4 shows jumps in magnitude around negative words

(red). See e.g., amazing, special (blue), mess,
information which is naturally highlighted due to us.

A common approach for solving the classification problem
using neural networks trains an autoencoder model with an
L' loss over the normal beats. Classification is performed by
measuring the loss between the original and reconstructed
signals; thus, while it is a classification task, ECG classifi-
cation is solved via a regression model. In particular, high
loss values indicate anomalous beats, whereas low values
are attributed to normal signals. Typically, a threshold is set
during the training phase, allowing automatic classification
on the test set. We fix the threshold to be 26. Our network is
composed of a single layer LSTM encoder Fr,. with a hidden
size of 64, and an LSTM decoder Fy.. with one layer as well.
We use a publicly available subset of the MIT-BIH arrhyth-
mia database (Goldberger et al. 2000) for our data, named
ECG5000'. This dataset includes 5000 sample heartbeats
with a sequence length of 140. Around 60% of the sequences
are classified as normal and the rest are various anomalous
signals. The model is trained for 150 epochs, yielding an ac-
curacy of 97.1%, 97.6%, 98.6% on the train, validation and
test sets, respectively.

Similarly to the sentiment analysis problem, we expect the
Koopman eigenvectors to take a significant role in encoding
the latent dynamics. Given that the network is generative as
it is an autoencoder, we hypothesize that the eigenvectors

"http://timeseriesclassification.com/description.php?Dataset=
ECGS5000

waste,

muddled (red). We also show two reviews with contextual

{u;} capture dominant features of normal beats. Thus, we
project normal beats onto pairs of dominant eigenvectors, and
decode the resulting hidden states using the decoder to study
the obtained signals. For example, say Usg 59 are dominant,
then we project onto the space spanned by this pair, then
project back and decode. Using a test batch of 64 normal
beats we collect the last hidden state of every sample in a
matrix Hy, € R64*6% and we compute the following.

RO4XMO 5 X — Fyo(Hyo - B - Vi - Uis| - BY), (10)

where | - | is the element-wise modulus of complex numbers.
To determine which eigenvectors are dominant, we employ
Eq. (9).

To visualize the results, we take the set of reconstructed
signals X% of a particular pair ij, and we compute its me-
dian p1;;(t) fort € [1,...,n]. We plot these graphs in Fig. 2
using colors orange (pair 58-59), green (pair 25-26), red
(pair 9-10), and brown (pair 50-51). In addition, the original
signals’ median p (purple) and the median of the signals
reconstruction p,. (blue) are shown in each of the subplots for
comparison. Indeed, i and i, are almost indistinguishable,
and can be differentiated only when zooming in. Each median
graph is wrapped in its median absolute deviation envelope.
We preferred median-based quantities over the common mean
and standard deviation since the latter produce cluttered plots
in our setting due to outliers. To understand which time steps
are important, we investigated (manually) the differences be-
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Figure 2: We show the median of reconstructions of normal beats when projected to each of the first four dominant conjugate
pairs of Koopman eigenvectors. The medians (orange, green, red, brown) are plotted on top of the original signals and their
reconstruction medians. The dashed black lines indicate important features of the signals which are well captured by the Koopman

eigenvectors.
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Figure 3: The network reconstructs relatively well both normal and anomalous signals (left), implying its inner representation is
binary. However, the silhouette scores of the Koopman embedding (right) imply that only a single class is being learnt in practice.

tween normal and anomalous signals as they appear in the
dataset. Namely, we classified the segments of the normal sig-
nals, which differed from the related parts in the anomalous
signals. These segments are common across normal signals,
and thus, more sensitive in terms of reconstruction error, mak-
ing them "salient". The plots in Fig. 2 clearly show that each
conjugate pair captures a different feature of the time series as
marked by the vertical dashed lines. Specifically, 1158 59 cap-
tures the minimum around ¢ = 3, and p95 26 encodes the part
of the signal in ¢ € [35, 75]. Moreover, (9,10 attains the max-
imum at ¢ = 103, and pi50,51 is approximating the lower peak
att = 133 and we consider these ¢ values to be the salient fea-
tures. Importantly, the other Koopman eigenvectors beyond
the ones we consider above are less important in the recon-
struction, and are mostly helpful in fixing minor variations.
Finally, we provide a similar computation in App. D using the
dominant PCA modes and Kerne1PCA eigenvectors, where
we show that PCA components and Kerne1PCA eigenvec-
tors are not useful in identifying the dominant features of beat
signals. Also, we provide a quantitative comparison between

the methods.

In addition to identifying principal features of beat sig-
nals, we show in what follows that the Koopman eigenvec-
tors are also instrumental in analyzing the latent structure
of the LSTM autoencoder. We begin by showing in Fig. 3
(left) the median values over time of a normal batch and
its reconstruction (as in Fig. 2), and similarly for a batch
of anomalous signals (orange and brown). From this data,
the task of ECG classification may be viewed as a binary
classification problem, separating normal from anomalous
signals via reconstruction. However, we will now show that
this is actually not the case. Instead, the network essentially
encodes inputs, whether normal or anomalous, in a repre-
sentation that is closer to the manifold of normal signals.
To demonstrate and analyze this phenomenon, we consider
hidden state tensors H,, and H,, of normal and anomalous
beats, respectively, and we concatenate these tensors over
the samples yielding H = (Hpo, Hy,) € R128x140x64 we
would like to study the decision boundary separating between
different signals in the latent space.
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Figure 4: On the tasks we consider, our approach approximately reproduces the network classification outputs. In particular, we
obtain > 99% on the sentiment analysis as it shown for the True Positive (TP) and True Negative (TN) columns vs. the False
Positive (FP) and False Negative (FN) columns, where TP and TN represent the correspondence with the classification of the
network over all the test set. For the ECG classification we reach > 97% agreement. See App. H

To this end, we employ a standard measure known as
the silhouette score (Rousseeuw 1987) to quantify the class
separation quality. The silhouette score o is a real value in
[—1, 1], where scores close to 1 mean the latent states are
well separated. In contrast, values closer to zero indicate that
samples are located on or close to the decision boundary.
We compute the silhouette score estimates on H = H - B
averaged over samples, and cumulatively averaged over time.

Namely, o(t) = ¥ 10 (hs,), where o (hs.) is the sil-
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houette score of the vector hs; with s € [1,...,128] and
t € [1,...,140]. We compare three silhouette score estimates

denoted by: ¢ for the original H, opca for the projection
of H onto its first five principal components, and 0koopman

for the projection of H onto the first five dominant Koop-
man eigenvectors. The results are shown in Fig. 3 (right),
where Koopman’s embedding attains low scores compared to
PCA and the original states. Namely, embedding the hidden
states using Koopman eigenvectors reveals that the decision
boundary between normal and anomalous signals is some-
what blurred, in contrast to the numerical results provided
by the reconstructed signals and other embeddings. This un-
derstanding provides a rather straightforward interpretation
of the model: it simply encodes the dominant components
of all signals as being normal, allowing to easily identify
anomalous signals later by measuring their reconstruction
error. Finally, our analysis shows that Koopman eigenvec-
tors successfully identify the salient features of normal beat
signals. We conclude from this observation that the network
focuses on identifying these features and reconstructing them
accurately. A correct reconstruction of these salient features
allows to subsequently identify using a simple loss check
whether a signal is normal or anomalous. Importantly, we
show in Fig. 3 that the network indeed successfully recon-
structs normal and anomalous signals. The understanding that
we obtain using KANN is that the network mainly focuses on
these salient features during the reconstruction.

KANN Reproduces the Latent Dynamics

We perform a quantitative study of the ability of C' to truly
capture the latent dynamics. We show in Fig. 4 that indeed,
KANN is able to reproduce the nonlinear dynamics of the
network in Eq. (1) to a high degree of precision, and thus
we achieve the empirical justification to replace F' with C.
Namely, we show that indeed C represent the neural network
at hand and not some arbitrary dynamics.

To this end, we consider the following two metrics: Rel-
ative error and Accuracy error (see App. H). For the sen-
timent analysis problem (Fig. 4, left), we obtain > 99%
correspondence with the classification of the network over all
the test set. In the ECG classification task we obtain the same
result in terms of accuracy error. Further, in Fig. 4, right, we
reconstruct 145 signals of the normal test set and compute
their loss. Finally, we also computed the relative error of
the hidden states, obtaining e, = 0.095 for the sentiment
analysis task, and e;¢) = 0.0056 for the ECG classification
problem. For more details see App. H.

Discussion

In this work we presented a novel framework for studying se-
quence neural models based on Koopman theory and practice.
Our method involves a dimensionality reduction representa-
tion of the states, and the computation of a linear map be-
tween the current state and the next state. Key to our approach
is the wealth of tools we can exploit from linear analysis
and Koopman-related work. In particular, we compute linear
approximations of the state paths via simple matrix-vector
multiplications. Moreover, we identify dominant features of
the dynamical system and their effect on inference and pre-
diction. Our results on the sentiment analysis problem, and
the ECG classification challenge provide simple yet accurate
descriptions of the underlying dynamics and behavior of the
recurrent models. Our work lays the foundations to further
develop application-based descriptive frameworks, towards
an improved understanding of neural networks. In the fu-
ture, we plan to explore our framework during the training
of the model, where in this work we focused only on trained
models.
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