An Operator Theoretic Approach for Analyzing Sequence Neural Networks

Ilan Naiman*, and Omri Azencot AAAI, 2023. Abstract Analyzing the inner mechanisms of deep neural networks is a fundamental task in machine learning. Existing work provides limited analysis or it depends on local theories, such as fixed-point analysis. In contrast, we propose to analyze trained neural networks using an operator theoretic approach which is rooted in Koopman theory, the Koopman Analysis of Neural Networks (KANN). Key to our method is the Koopman operator, which is a linear object that globally represents the dominant behavior of the network dynamics. The linearity of the Koopman operator facilitates analysis via its eigenvectors and…