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Abstract
Deep neural networks have been demonstrated to
achieve phenomenal success in many domains,
and yet their inner mechanisms are not well un-
derstood. In this paper, we investigate the cur-
vature of image manifolds, i.e., the manifold de-
viation from being flat in its principal directions.
We find that state-of-the-art trained convolutional
neural networks for image classification have a
characteristic curvature profile along layers: an
initial steep increase, followed by a long phase
of a plateau, and followed by another increase.
In contrast, this behavior does not appear in un-
trained networks in which the curvature flattens.
We also show that the curvature gap between the
last two layers has a strong correlation with the
generalization capability of the network. More-
over, we find that the intrinsic dimension of latent
codes is not necessarily indicative of curvature.
Finally, we observe that common regularization
methods such as mixup yield flatter representa-
tions when compared to other methods. Our ex-
periments show consistent results over a variety
of deep learning architectures and multiple data
sets. Our code is publicly available at https:
//github.com/azencot-group/CRLM

1. Introduction
Real-world data arising from scientific and engineering prob-
lems is often high-dimensional and complex. Using such
data for downstream tasks may seem hopeless at first glance.
Nevertheless, the widely accepted manifold hypothesis (Cay-
ton, 2005) stating that complex high-dimensional data is in-
trinsically low-dimensional, suggests that not all hope is lost.
Indeed, significant efforts in machine learning (Khalid et al.,
2014; Bengio et al., 2013) have been dedicated to developing
tools for extracting meaningful low-dimensional features
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from real-world information. Particularly successful in sev-
eral challenging tasks such as classification (Krizhevsky
et al., 2017) and recognition (Girshick et al., 2014) are deep
learning approaches which manipulate data via nonlinear
neural networks. Unfortunately, the inner mechanisms of
deep models are not well understood at large.

Motivated by the manifold hypothesis and more generally,
manifold learning (Belkin & Niyogi, 2003), several recent
approaches proposed to analyze deep models by their latent
representations. A manifold is a topological space locally
similar to a Euclidean domain at each of its points (Lee,
2013). A key property of a manifold is its intrinsic di-
mension, defined as the dimension of the related Euclidean
domain. Recent studies estimated the intrinsic dimension
(ID) along layers of trained neural networks using neighbor-
hood information (Ansuini et al., 2019) and topological data
analysis (Birdal et al., 2021). Remarkably, it has been shown
that the ID admits a characteristic “hunchback” profile (An-
suini et al., 2019), i.e., it increases in the first layers and
then it decreases progressively. Moreover, the ID was found
to be strongly correlated with the network performance.

Still, the intrinsic dimension is only a single measure, pro-
viding limited knowledge of the manifold. To consider
other properties, the manifold has to be equipped with an
additional structure. In this work, we focus on Rieman-
nian manifolds which are differentiable manifolds with an
inner product (Lee, 2006). Riemannian manifolds can be
described using properties such as angles, distances, and
curvatures. For instance, the curvature in two dimensions
is the amount by which a surface deviates from being a
plane, which is completely flat. Ansuini et al. (2019) con-
jectured that while the intrinsic dimension decreases with
network depth, the underlying manifold is highly curved.
Our study confirms the latter conjecture empirically by esti-
mating the principal curvatures of latent representations of
popular deep convolutional classification models trained on
benchmark datasets.

Previously, curvature estimates were used in the analysis
of trained deep models to compare between two neural net-
works (Yu et al., 2018), and to explore the decision bound-
ary profile of classification models (Kaul & Lall, 2019).
However, there has not been an extensive and systematic
investigation that characterizes the curvature profile of data
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representations along layers of deep neural networks, sim-
ilar to existing studies on the intrinsic dimension. In this
paper, we take a step forward toward bridging this gap. To
estimate principal curvatures per sample, we compute the
eigenvalues of the manifold’s Hessian, following the algo-
rithm introduced in (Li, 2018). Our evaluation focuses on
convolutional neural network (CNN) architectures such as
VGG (Simonyan & Zisserman, 2015) and ResNet (He et al.,
2016) and on image classification benchmark datasets such
as CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We
address the following questions:

• How does curvature vary along the layers of CNNs?
Do CNNs learn flat manifolds, or, alternatively, highly-
curved data representations? How do common reg-
ularizers such as weight decay and mixup affect the
curvature profile?

• Do curvature estimates of a trained network are in-
dicative of its performance? Is there an indicator that
generalize across different architectures and datasets?

• Is there a correlation between curvature and other geo-
metric properties of the manifold, such as the intrinsic
dimension? Can we deduce the curvature behavior
along layers using dimensionality estimation tools?

Our results show that learned representations span mani-
folds whose curvature is mostly fixed with relatively small
values (on the order of 1e−1), except for the output layer
where curvature increases significantly (on the order of 1).
Moreover, this curvature profile was shared among several
different convolutional architectures when considered as a
function of the relative depth of the network. In particu-
lar, highly-curved data manifolds at the output layer have
been observed in all cases, even in mixup-based models
(Zhang et al., 2018) which flatten intermediate manifolds
more strongly in comparison to non mixup-based networks.
In contrast, untrained models whose weights are randomly
initialized presented a different curvature profile, yielding
completely flat (i.e., zero curvature) manifolds towards the
later layers. Further, our analysis suggests that estimates
of dimensionality based on principal component analysis
or more advanced methods need not reveal the actual char-
acteristics of the curvature profile. Finally and similarly to
indicators based on the intrinsic dimension (Ansuini et al.,
2019; Birdal et al., 2021), we have found that the curva-
ture gap in the last two layers of the network predicts its
accuracy in that smaller gaps are associated with inferior
performance, and larger gaps are related to more accurate
models.

2. Related Work
Geometric approaches commonly appear in learning-related
tasks. In what follows, we narrow our discussion to
manifold-aware learning and manifold-aware analysis
works, and we refer the reader to surveys on geometric
learning (Shuman et al., 2013; Bronstein et al., 2017).

Manifold-aware learning. Exploiting the intrinsic struc-
ture of data dates back to at least (Belkin & Niyogi, 2004),
where the authors utilize the graph Laplacian to approxi-
mate the Laplace–Beltrami operator, which further allows
to improve classification tools. More recently, several ap-
proaches that use geometric properties of the underlying
manifold have been proposed. For instance, the intrinsic
dimension (ID) was used to regularize the training of deep
models, and it was proven to be effective in comparison to
weight decay and dropout regularizers (Zhu et al., 2018),
as well as in the context of noisy inputs (Ma et al., 2018b).
Another work (Gong et al., 2019) used the low dimension
of image manifolds to construct a deep model. Focusing on
symmetric manifolds, Jensen et al. (2020) propose a genera-
tive Gaussian process model which allows non-Euclidean
inference. Similarly, Goldt et al. (2020) suggest a generative
model that is amenable to analytic treatment if data is con-
centrated on a low-dimensional manifold. Other approaches
aim for a flat latent manifold by penalizing the metric tensor
(Chen et al., 2020), and incorporating neighborhood penalty
terms (Lee et al., 2021). Additional approaches modify neu-
ral networks to account for metric information (Hoffer &
Ailon, 2015; Karaletsos et al., 2016; Gruffaz et al., 2021). A
recent work (Chan et al., 2022) showed that mapping distri-
butions of real data, on multiple nonlinear submanifolds can
improve robustness against label noise and data corruptions.

Manifold-aware analysis. Basri & Jacobs (2017) explore
the ability of deep networks to represent data that lies on
a low-dimensional manifold. The intrinsic dimension of
latent representations was used in (Ma et al., 2018a) to
characterize adversarial subspaces, and to distinguish be-
tween learning styles with clean and noisy labels (Ma et al.,
2018b). In (Li et al., 2018), the authors employ random
subspace training to approximate the ID, and to relate it
to problem difficulty. Further, Pope et al. (2020) found
that the ID is correlated with the number of natural image
samples required for learning. Subsequently, Kienitz et al.
(2022) investigated the interplay between entanglement and
ID, and their effect on the sample complexity. Birdal et al.
(2021) harness the formalism of topological data analysis
to estimate the ID, and they show it serves as an indicator
for the generalization error. Perhaps closest in spirit to our
study is the work (Ansuini et al., 2019) where the ID is
estimated on several popular vision deep architectures and
benchmarks. Their results show that the intrinsic dimension
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follows a characteristic hunchback profile, and that the ID is
negatively correlated with generalization error. Additionally,
the authors speculate that latent representations in the final
layer of neural networks are highly curved due to the large
gap between the ID and the linear dimension (PC-ID) as
measured by principal component analysis (PCA).

Beyond dimensionality, other works considered additional
properties of the manifold. In (Tosi et al., 2014; Arvanitidis
et al., 2018), the authors compute the Riemannian metric to
obtain faithful latent interpolations. Buchanan et al. (2020)
studied how DNNs can separate two curves, representing the
data manifolds of two separate classes, on the unit sphere.
The geometry in deep models with random weights was
studied in (Poole et al., 2016), where the authors find that
curvature of decision boundaries flatten with depth, whereas
data manifolds of e.g., a circular path increase their curva-
ture along network layers. Similarly, Kaul & Lall (2019)
also explore the curvature around the decision boundary, and
they identify high curvature in transition regions. In con-
trast, Fawzi et al. (2018) identify that the decision boundary
is mostly flat near data points.

The curvature of latent representations was estimated
in (Brahma et al., 2015) using deep belief networks (Hinton
et al., 2006) with Swiss roll data and face images. One of
the main conclusions was that the manifold flattens with
depth. However, their curvature estimates were based on
geodesic distances using the connectivity graph, and thus
such estimates may be less reliable in settings of sparse and
high-dimensional data manifolds. In contrast to (Brahma
et al., 2015), it is shown in (Shao et al., 2018) that mani-
folds learned with variational autoencoders for image data
are almost flat. Yu et al. (2018) use curvature estimates
to compare between two neural networks with respect to
their fully connected layers. To stabilize computations, the
authors propose to augment the data in the neighborhood of
every sample. Overall, curvature characterization of latent
representations related to deep convolutional models and
benchmark datasets is still missing, and thus we focus the
current research on this setting.

3. Background and Method
Given a dataset (e.g., CIFAR-10) and an architecture (e.g.,
ResNet18), we train the model on the data, and we collect
its latent representations along the layers of the model for
the train and test sets. Curvature information is estimated
for the latent codes, and we perform our analysis on a single
curvature quantity, typically the mean absolute value of
principal curvatures (see the discussion in App. A), and on
the distribution of principal curvatures. In what follows,
we briefly describe the extraction of latent codes and the
curvature estimation procedure.
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Figure 1. We plot the average Euclidean distance of neighborhoods
points to their center with respect to the network relative depth.
SVD yields denser neighborhoods, and thus we use it in our study.

Data density. In contrast to the intrinsic dimension which
is a global feature of the manifold (for connected manifolds),
curvature information is a local property (Lee, 2006). Addi-
tionally, curvatures are based on second-order derivatives
of the manifold. Thus, our investigation makes the implicit
assumption that data is sufficiently dense for computing
curvatures. However, datasets that frequently appear in ma-
chine learning, e.g., CIFAR-10, are high-dimensional and
sparse, and thus computing local differentiable quantities
on such data is extremely challenging.

The above characteristics of typical machine learning data
require a large number of close points for creating a sta-
ble neighborhood. To this end, a commonly-used tool is
k-Nearest-Neighbours (KNN). Unfortunately, this method
depends on the closeness of points in the dataset, and thus
it may generate non-local and spare neighborhoods where
“neighbors” are effectively far in a Euclidean sense. Another
common method is to use domain-specific augmentations.
For instance, applying image transformations such as rota-
tion and scaling, based on the assumption that natural im-
ages are invariant to these geometric transforms. However,
geometric manipulations explore only a particular aspect of
the data manifold, while potentially ignoring other parts. An
effective domain-agnostic approach computes the Singular
Value Decomposition (SVD) per data point, and it generates
a close neighborhood by filtering out small amounts of noise
in the data. The approach is well motivated from a differen-
tial geometry viewpoint as it is closely related to computing
a first-order approximation of the manifold at a point, and
sampling the point neighborhood. We provide a detailed
comparison between the above three methods in App. D.
In addition, we show in Fig. 1 the average distance to the
center of points generated with affine transformations, kNN
and SVD, across the network layers. Notably, SVD provides
denser neighborhoods, and thus we use this approach in our
study as detailed below.
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Neighborhood generation. To improve the local density
of image samples, we use the same procedure as in (Yu
et al., 2018) to generate artificial new samples by reducing
the “noise” levels of the original data. Specifically, given an
image I ∈ Rm×n×c, we denote by Ij ∈ Rm×n the matrix at
channel j. Let Ij = UΣV T be its SVD, where U ∈ Rm×m,
V ∈ Rn×n and Σ ∈ Rm×n a rectangular diagonal matrix
with singular values {σ1, σ1, · · · , σr} on the diagonal in
descending order such that r is the rank of Ij . We define
Σ′ as the result of zeroing a subset of singular values in Σ,
allowing to create a new close image I ′j = UΣ′V T . This
process is performed along all three R, G, B layers. In our
experiments we zeroed all combinations of the ten smallest
singular values, generating 1024 new images.

Latent representations. Given an image I of the data of
interest, we generate its neighborhood samples using the
procedure above, denoted by {I ′(i)} for i = 1, . . . , 1024.
We pass the original image and its neighborhood through the
network, and our curvature analysis is performed separately
on every such batch. Importantly, passing the input batch
of the image and its neighborhood through the nonlinear
transformations of the network yields an approximation of
a local patch on the manifold, allowing for robust curvature
computations. In practice, we extract the latent codes of
a subset of layers, similarly to (Ansuini et al., 2019). For
instance, in the experiments with ResNets we use the latent
codes after every ResNet block and the average pooling
before the output. We note that our analyses includes curva-
ture information in the input layer, even though it is shared
across different architectures for the same dataset.

Curvature estimation. There are multiple approaches to
estimate curvature quantities of data representations, see
e.g., (Brahma et al., 2015; Shao et al., 2018). We decided to
use the algorithm presented in (Li, 2018) and named Curva-
ture Aware Manifold Learning (CAML) since it is backed
by theory and is relatively efficient. CAML requires the
neighborhood of a sample, and an estimate of the unknown
ID. The ID is computed using the TwoNN algorithm (Facco
et al., 2017) on the original dataset (without augmentation)
per layer, similarly to (Ansuini et al., 2019).

Let Y = {y1, y2, · · · , yN} ⊂ RD be the data on which we
want to estimate the curvature. We assume that the data lies
on a d-dimensional manifold M embedded in RD where d
is much smaller than D, thus, M can be viewed as a sub-
manifold of RD. The key idea behind CAML is to compute
a second-order local approximation of the embedding map,

f : Rd → RD , yi = f(xi) + ϵi , i = 1, . . . , N , (1)

where X = {x1, x2, · · · , xN} ⊂ Rd are low-dimensional
representations of Y , and {ϵ1, ϵ2, · · · ϵN} are the related
noises. In the context of this paper, the embedding map

f is the transformation that maps the low-dimensional im-
age representations to a pixel-wise form that might hold
redundant information.

To estimate curvature information at a point yi ∈ Y , we
define its neighborhood via the procedure described above,
yielding a set of close points {yi1 , . . . , yiK} where K is the
number of neighbors. We use this set and the point yi to
construct via SVD a local natural orthonormal coordinate
frame

{
∂

∂x1 , · · · , ∂
∂xd ,

∂
∂y1 , · · · , ∂

∂yD−d

}
, composed of a

basis for the tangent space (first d elements), and a basis for
the normal space. We denote by xi and uij the projection of
yi and yij for j = 1, . . . ,K to the tangent space spanned by
∂/∂x1, . . . , ∂/∂xd, respectively. Importantly, the neighbor-
hood of yi must be of rank r > d, otherwise, SVD can not
encode the normal component at xi, yielding poor approx-
imations of f at xi. Thus, we verify that {yi1 , . . . , yiK} is
of rank d+ 1 or more.

The map f can then be re-formulated in the latter coordinate
frame as f(x1, . . . , xd) = [x1, . . . , xd, f1, . . . , fD−d]. The
second-order Taylor expansion of fα at uij with respect to
xi and up to O(|uij |22) error is given by

fα(uij ) ≈ fα(xi) + ∆T
xi
∇fα +

1

2
∆T

xi
Hα∆xi

, (2)

where α = 1, . . . , D − d, ∆xi
= (uij − xi) and uij is a

point in the neighborhood of xi. The gradient of fα is de-
noted by ∇fα, and Hα =

(
∂2fα

∂xi∂xj

)
is its Hessian. Given a

neighborhood {yi1 , . . . , yiK} of yi, and their corresponding
tangent representations {uij}, we can use Eq. 2 to form
a system of linear equations, as we detail in App. E. The
principal curvatures are the eigenvalues of Hα, and thus
estimating curvature information is reduced to a linear re-
gression problem followed by an eigendecomposition. Each
Hessian has d eigenvalues, therefore each sample will have
(D − d) × d principal curvatures. Finally, we note that
one can potentially also compute the Riemannian curva-
ture tensor using the principal curvatures (Yu et al., 2018).
However, the latter tensor has an order of d4 elements, and
thus its evaluation demands high computational resources.
Further, as the Riemannian curvature tensor is fully deter-
mined by the principal curvatures, we base our analysis on
the eigenvalues of the Hessian. To evaluate the curvature
of manifolds, we estimate the mean absolute principal cur-
vature (MAPC) which is given by the mean of the absolute
values of eigenvalues of the estimated Hessian matrices.

CAML evaluation. The CAML algorithm (Li, 2018) was
published without implementation and had a few minor
issues. To test our implementation we focused on two 2-
dimensional manifolds: spheres and ellipsoids. The Gaus-
sian curvature at a point p of these manifolds has a closed-
form formulation defined as the product of the principal
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Figure 2. Estimation of the curvature of the surface of a sphere and the surface of an ellipsoid using the CAML algorithm. A)
Estimation of the curvature of spheres with different radii where CSi is the Gaussian curvature of a sphere with radius i and ĈSi is the
estimated curvature using the CAML algorithm. B) The relative error between the estimation and the analytic value of the Gaussian
curvature of an ellipsoid.

values at p. For instance, a sphere of radius r has a Gaus-
sian curvature of 1

r2 everywhere. Fig. 2 shows the Gaussian
curvature estimation of three different spheres using the
CAML algorithm. In contrast to the surface of a sphere, the
points on the surface of an ellipsoid have different Gaussian
curvature values, given by the following equation:

K(x, y, z) =

(
a2b2c2

(
x2

a4
+

y2

b4
+

z2

c4

)2
)−1

, (3)

where a, b, and c are the parameters that define the ellipsoid:(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1 . (4)

It is noticeable that the relative error quickly decreases to
zero as samples increase, meaning that the CAML algorithm
is able to estimate curvatures of object manifolds reliably.

4. Results
4.1. Data manifolds feature a common curvature profile

We begin our analysis with an empirical evaluation of the
curvature of latent representations along the layers of a
ResNet18 network (He et al., 2016), trained on the CIFAR-
10 dataset (Krizhevsky et al., 2009). For a selected subset
of layers, we estimate the mean absolute principal curvature
(MAPC) as described in Sec. 3. We repeat MAPC evaluation
for ten models initialized with random seeds, and we show
standard deviation per layer in orange. In Fig. 3 we observe
that MAPC is generally increasing with depth, demonstrat-
ing a large variation of almost four orders of magnitude:
MAPC(Input) = 1.6e−4 and MAPC(Linear) = 3.0, see
Fig. 3A. Additionally, sharp increases in curvature occur
during the transition between the input and the output of the

following layer (BasicBlock) as well as between the penul-
timate to last layers (avgpool to Linear). Notably, MAPC is
relatively fixed for a majority of network layers.

Our curvature estimates depend directly on the neighbor-
hood around each data point, see Sec. 3. Specifically, sparse
and noisy neighborhoods may lead to poor estimates of
curvature. We evaluate the robustness of our MAPC com-
putations by evaluating CAML on a repeated sub-sampling
of the neighborhood. We observe an overall stable behavior
for MAPC values along the last five layers of ResNet18, see
Fig. 3B. In particular, MAPC values stabilize in terms of
standard deviation when the number of samples per neigh-
borhood reached 1024 elements, and thus we collect 1024
samples in all of our experiments.

We further our exploration by investigating whether the char-
acteristic “step-like” shape of MAPC shown in Fig. 3A is
shared across multiple networks and datasets. We repeated
the above analysis for three variants of a VGG architecture
(VGG13, VGG16, VGG19) and three variants of a ResNet
architecture (ResNet18, ResNet50, ResNet101) trained on
CIFAR-10 and CIFAR-100 datasets, for a total of 12 differ-
ent models. We show in Fig. 3C six MAPC profiles obtained
for CIFAR-10 and plotted with respect to the relative depth
of the network. Similarly to (Raghu et al., 2017), we define
the relative depth as the absolute depth of the layer divided
by the total number of layers, not counting batch normal-
izations. Remarkably, the MAPC profiles reveal a common
step-like shape, despite the large variation in the underlying
models in terms of overall structure, number of layers, and
regularization methods. Beyond their shared behavior, all
MAPC graphs attain similar absolute values across network
layers, overlapping particularly in the last layer. See a quali-
tatively similar plot for CIFAR-10 test set, and CIFAR-100
train set in Fig. 13.
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A B C

Figure 3. Mean absolute principal curvature along layers of deep convolutional networks. A) MAPC and standard deviation as
measured for ten seeds using ResNet18 on CIFAR-10 train set. B) Repeated evaluation of MAPC on sub-sampled neighborhoods
converges for 1024 elements. C) MAPC graphs for VGG and ResNet families as a function of the model’s relative depth, presenting a
characteristic step-like shape in all cases.

Our results identify that curvature of data manifolds admits
a particular trend including three phases: an initial increase,
followed by a long phase of a plateau, and ending with
an abrupt final increase. These results are consistent with
theoretical studies (Cohen et al., 2020), and empirical ex-
plorations on neural networks with random weights (Poole
et al., 2016). Particularly relevant are the findings in (An-
suini et al., 2019), showing low values of intrinsic dimension
(ID) in the last layer of deep convolutional networks, and
a large gap between the ID and its linear estimation (PC-
ID). The authors propose an indicator for the generalization
of the model to unseen data based on the ID values in the
last hidden layer, and additionally, they related the gap be-
tween PC-ID and ID to the curvature of the data manifold.
Motivated by their results and analysis, we suggest a new
curvature-based generalization indicator (4.2), and we study
the relation between dimensionality and curvature (4.3).

4.2. Curvature gap in final layers is correlated with
model performance

Our empirical results regarding the curvature profiles for
CIFAR-10 and CIFAR-100 (Figs. 3, 13) indicate that MAPC
values are higher for CIFAR-10. Moreover, the difference
between curvatures in the last two layers of the network,
termed MAPC gap from now on, are noticeably smaller for
CIFAR-100. In addition, curvature values vary across differ-
ent models trained on the same dataset. These differences
led us to investigate whether the MAPC gap is correlated
with the performance of CNNs across architectures and
datasets. Specifically, we consider the normalized MAPC
(NMAPC) gap defined as the MAPC gap divided by the
average of MAPC across layers, and we compare it against
the accuracy of the network. We evaluate the normalized
gap on the train sets of CIFAR-10 and CIFAR-100 for the
ResNet and VGG families. Each data point corresponds to
one of the six models, where the size of the marker repre-

sents the network size, e.g., smallest marker for ResNet18
and largest marker for ResNet101 (Fig. 4A). We observe
a remarkable correspondence between model performance
and the NMAPC gap, also emphasized by the additional lin-
ear fit graphs per network family. These linear graphs show
a consistent trend per family with respect to the difference
in gap in relation to difference in accuracy.

To further investigate the correlation between the NMAPC
gap and model performance, we perform the following ex-
periment. We divide the CIFAR-100 dataset which contains
a hundred different classes c1, c2, . . . , c100 to ten subsets
i ∈ {1, . . . , 10} such that subset i contains samples from
classes c1 to c10i. We trained all six networks on all subsets,
and we computed the NMAPC gap and compared it with
model performance (Fig. 4B). To improve visibility, we use
a different color for every network. Per architecture, each
data point corresponds to one of the subsets, where its size
represents the size of the subset, e.g., largest markers for the
full CIFAR-100 dataset. Similarly to Fig. 4A, we augment
the plot with linear fit graphs per architecture. In all models
and subsets, we find a remarkable correlation between the
NMAPC gap and accuracy value. We emphasize that simi-
larly to the ID indicator (Ansuini et al., 2019), the NMAPC
gap can be employed without accessing the test set.

4.3. Dimensionality and curvature of data manifolds
need not be correlated

Our third analysis explores the relation between dimension-
ality and curvature of the data manifold. Existing work on
data representations assumes there is a correlation in the
flatness of the manifold with respect to dimensionality mea-
sures (Verma et al., 2019; Ansuini et al., 2019). On the other
hand, analytic examples in geometry such as minimal sur-
faces where the principal curvatures are equal and opposite
at every point (Do Carmo, 2016), tell us that dimensionality
and curvature need not be related. Motivated by these con-
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A B C D

Figure 4. NMAPC gap is correlated with accuracy. A) Normalized MAPC gap with respect to model accuracy for six different networks
on CIFAR-10 (top) and CIFAR-100 (bottom). B) Normalized MAPC gap with respect to accuracy for six different networks on subsets of
CIFAR-100, see text. Comparison of dimensionality and curvature. C) Relative difference between linear dimension and intrinsic
dimension, and maximum gap in eigenvalues of the covariance matrix are compared with MAPC along the relative depth of ResNet18
trained on CIFAR-10. D) PC-ID, ID and MAPC for the same network.

siderations, we ask: how does the dimension correspond to
curvature along the network’s layers?

To address this question, we extracted the latent represen-
tations of a ResNet18 network trained on the CIFAR-10
dataset, and we computed the linear dimension (PC-ID),
intrinsic dimension (ID), and mean absolute principal cur-
vature (MAPC). Following (Ansuini et al., 2019), PC-ID
is defined to be the number of principal components that
describe 90% of the variance in the data, and ID is com-
puted using TwoNN (Facco et al., 2017). We focus on the
relative absolute difference between PC-ID and ID, i.e.,
RD := |PC-ID − ID|/ID, as a proxy for inferring curvature
features, see Fig. 4C. In comparison to the MAPC profile
(black), we found no correlation with the relative difference
(purple). For instance, RD is high in the first two layers,
whereas MAPC is low in the first layer, and then it increases
significantly in the second layer. Notably, RD and MAPC
admit a weak inverse correlation toward the last three lay-
ers of the model. Additionally, we estimate the maximum
gap in the eigenvalues of the normalized covariance matrix
given by MGE := maxj(λ̄j − λ̄j+1), where λ̄j are the
eigenvalues scaled to the range [0, 1]. Similarly to the rela-
tive difference graph (RD), the maximum gap in eigenvalues
(MGE) colored in orange generally does not correspond to
MAPC. In particular, MGE in the first and last layers are
close in value, whereas MAPC exhibits a difference of four
orders of magnitude in those same layers. We also plot
PC-ID, ID, and MAPC for the same network in Fig. 4D,
showing the non-relative dimension estimates and MAPC.

4.4. Training dynamics

Due to the correspondence between model performance and
the NMAPC gap, we were interested to see if the training
process of the network increases the mentioned gap. We
trained a Resnet18 network with CIFAR-10 and observed

how the gap changes. We hypothesized that the gap will
increase as the network training converges. Remarkably,
we indeed find that the NMAPC gap is highly correlated
with the behavior of the network during training (Fig. 5).
Each dot in the plot represents a different snapshot of the
model during training, and it is positioned with respect to
its accuracy on the test set as a function of the epoch. The
points are colored by their NMAPC gap (see color bar on
the right). Overall, we observe that during training the
accuracy increase in conjunction with the gap, meaning that
the network favors a large gap to increase its performance.

4.5. Untrained networks exhibit a different profile

We also computed curvature estimates of data representa-
tions along the layers of VGG13, VGG16, and VGG19 for
randomly initialized networks. In comparison to MAPC
profiles of trained networks (solid lines in 6A), untrained
models demonstrate significantly different trends (dashed
lines in 6A). While curvature profiles of randomly initial-
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Figure 5. Training dynamics of the NMAPC gap on ResNet18
and CIFAR-10. The plot shows how the accuracy changes during
training, colored by the normalized curvature gap.
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A B C

Figure 6. Comparison of MAPC profiles for baseline models with untrained networks and regularized networks. A) MAPC graphs
for VGG neural architectures before and after training. B) MAPC graphs for ResNet neural architectures before and after training. C)
MAPC graphs for ResNet50 networks trained with regularizers such as weight decay, learning rate scheduling, and mixup.

ized models and trained networks approximately match up
until half of the network depth, there is a sharp decrease in
MAPC for untrained models in the second half. Importantly,
MAPC values present a similar increase in the first layers
for all models, whereas, in the final layers of untrained net-
works MAPCs are essentially zero. We also note that the
decrease in curvature is steeper for larger networks—the
orange line (VGG19) is lower than the green line (VGG16),
which in turn, is lower than the cyan line (VGG13), except
for the final layer. ResNet architectures also present a differ-
ent profile, with constant MAPC along layers and a sharp
decrease at the final layer, Fig. 6B. These results indicate
that MAPC profiles of deep convolutional neural networks
initially depend on the structure of the model, however, the
behavior in the last layers is a direct result of training.

4.6. The effect of standard regularizers on curvature

Regularization is a common practice for modern neural
models which are often overparameterized, i.e., the amount
of trainable weights is significantly larger than the amount
of available train data (Allen-Zhu et al., 2019). Beyond
limiting the parameter space to preferable minimizers, and
leading to better generalization properties, certain regular-
ization techniques may affect additional features of the task.
For instance, mixup-based methods which augment train
data with convex combinations of the inputs and labels
(Zhang et al., 2018) are associated with the flattening of the
data manifold (Verma et al., 2019). In their context, flatten-
ing means that significant variance directions on the data
manifold are reduced. Our curvature estimation framework
motivates us to further ask: how do typical regularizers
affect curvature statistics of convolutional neural networks?

In the following experiment we investigate this aspect with
the baseline model ResNet50 used throughout the paper.
The ResNet50 net is trained with weight decay of 5e−4 and
cosine annealing learning rate scheduling. Additionally, we
also train this network with no regularizers, and with mani-

fold mixup and mixup (and no other regularization). We find
that all four models demonstrate a step-like profile (Fig. 6C)
consistent with our results (Fig. 3). In particular, the plateau
regime and high final MAPC were observed across all mod-
els. Notably, while the networks attained different curvature
values in the last layer, the normalized MAPC gap (Fig. 4)
distinguishes between the models, and it is correlated with
their performance. Namely, we obtain 14, 14, 13, 8 normal-
ized MAPC gaps for the baseline, manifold mixup, mixup,
and no regularization networks, respectively (see their test
set accuracy in the legend of Fig. 6C). As per flattening
of the data manifold, we note that manifold mixup admits
an MAPC profile close in values to our baseline model,
whereas mixup shows a significant reduction in curvature
(an order of magnitude along most layers in comparison
to baseline). Remarkably, mixup does seem to flatten data
representations in intermediate layers although it only alters
the training samples. In contrast, manifold mixup which
manipulates latent codes in a similar fashion to mixup, does
not seem to affect MAPC values much. Further, these re-
sults reinforce our findings above that high curvature in the
last layer, or more precisely, high normalized MAPC gap, is
fundamental to the success of the learning model.

Figure 7. Distribution of principal curvatures for ResNet mod-
els. Each plot shows the histogram profiles of principal curvatures
per layer, colored by their relative depth.
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4.7. Distribution of principal curvatures

In our analysis above, we focused on a single estimate of
curvature for the entire manifold based on the average ab-
solute value of principal curvatures (i.e., eigenvalues of
the Hessian). However, we recall that curvature is a local
property for each point of the manifold, and thus curvature
variability should also be investigated. Here, we inspect the
distribution of principal curvatures for all points at every
layer. We estimate (D − d) Hessian matrices for each of
the 1000 input images for the ResNet family (ResNet18,
ResNet50), resulting in d(D−d) ·1000 principal curvatures
per layer. To analyze this massive amount of information,
we compute a histogram per layer, and we plot them over-
layed and differentiated by colors according to their relative
depth (Fig. 7). For example, light curves are related to the
initial layers of the network, whereas dark curves are associ-
ated with final network layers. Notably, we observe similar
histogram profiles for the majority of intermediate layers
(yellow to red curves) across all architectures both in terms
of histogram shape and spread of values. Subsequent layers
(dark red to brown) present wider distributions, achieving
curvature values on the range of 102. Indeed, we observed a
mild increase in MAPC toward the last layer of the network
(Fig. 3C). The final layer shows that relatively more points
attained non-zero curvatures, yielding a histogram profile
with a wider base. This result confirms the sharp increase in
MAPC of the last layer of CNNs as shown in (Fig. 3C).

5. Discussion
Image classification is a fundamental task which is heavily
studied in neuroscience and machine learning. Common
wisdom on this problem suggest that untangling of man-
ifolds occurs throughout image processing by our vision
system and brain (DiCarlo & Cox, 2007), and by deep con-
volutional neural networks (Bengio et al., 2013). While
manifold untangling is commonly perceived as “simpler
separability” between class objects (often termed linear sep-
arability), defining formal measures of untangling is still an
active research topic (Chung et al., 2018). Manifold untan-
gling is typically mentioned alongside flattening of the data
manifold, a notion related to curvature and to Riemannian
geometry. A recent work on this topic distinguishes between
the curvature of the decision boundary, and the curvature
of the data manifold (Poole et al., 2016), identifying a flat-
tening of the decision boundary with depth and an opposite
behavior of the data manifold, on deep neural networks with
random weights. Additional theoretical and empirical stud-
ies provide a mixed picture on this topic, where some works
observe flat decision boundaries (Fawzi et al., 2018), and
others report highly-curved transition regions (Kaul & Lall,
2019). Further, (Brahma et al., 2015) describe the flattening
of data manifolds with depth, whereas (Shao et al., 2018)

essentially observe flat representations. This large variance
in results may be attributed to the large variety of different
architectures and datasets considered in these works. In this
context, our study is the first to investigate systematically
how the curvature of latent representations change in com-
mon state-of-the-art deep convolutional neural networks
used for image classification.

Complementary to existing work on geometric properties of
data representations involving their intrinsic dimension (An-
suini et al., 2019; Birdal et al., 2021), and density evolution
(Doimo et al., 2020), our study characterizes the curvature
profile of latent manifolds. The aggregated knowledge aris-
ing from prior works on convolutional networks indicate
that the intrinsic dimension presents a rapid increase over
the first layers, and then it progressively decreases toward
the last layers, reaching very low values in comparison
to the embedding dimension. In addition, the evolution
of the probability density of neighbors as measured for
ImageNet (Russakovsky et al., 2015) on several CNN ar-
chitectures shows almost no overlap with the output and
ground-truth distributions throughout most layers. Specif-
ically, an abrupt overlap emerges in a “nucleation”-type
process occurring at layer 142 of ResNet152 (i.e., toward
the final layers of the network). Our exploration adds to this
understanding that deep models feature a step-like mean ab-
solute principal curvature profile. For the majority of layers,
mean curvature and curvature distribution remain relatively
fixed and small in absolute values (Figs. 3, 7). In contrast, a
sharp increase in curvature appears in the final layers of the
network. Combining our findings with previous work, we
obtain a more comprehensive picture of the data manifold:
during the first layers, the network maintains almost flat
manifolds, allowing samples to move freely across layers
as more directions are available (flat MAPC and high ID).
Then, as computation proceeds, samples concentrate near
their same-class samples in highly-curved peaks, facilitat-
ing separation between clusters. This understanding can be
utilized by designing model whose curvature profile is step-
like by construction. To conclude, we hope that our analysis
in this work will inspire others to further our understand-
ing on data manifolds learned with deep neural networks,
allowing to develop better and more sophisticated learning
models in the future.
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A. Comparing Different Metrics of Curvature
The results shown in this paper measure curvature by investigating the Mean Absolute Principal Curvature (MAPC), which
is given by the average of the absolute values of eigenvalues of the estimated Hessian matrices. To perform a comprehensive
analysis, we show the behaviour of three additional metrics that measure curvature. Mean Absolute Mean Curvature
(MAMC) computes the mean absolute value on the mean curvature, which is the natural extension of mean curvature of
surfaces to manifolds in higher dimensions. The mean curvature is defined as the mean principal value, of the Hessian
matrix. We compute the mean curvature for each one of the α = 1, . . . , D − d Hessian matrices and then take the mean of
their absolute values. Mean Absolute Riemann Curvature (MARC) computes the mean of the absolute value of all the
components in the Riemann curvature tensor. Mean Absolute Sectional Curvature computes the mean of the absolute
value of the sectional curvatures. As shown in Fig. 8, the pairs MAPC, MAMC and MARC, MASC show a similar trend
while MARC and MASC are larger consistently across different networks. Overall, all the metrics exhibit comparable
behaviours and due to the lack of a canonical metric for providing a single scalar value that represents the curvature of a
manifold, we opted to use MAPC.

Figure 8. Comparison of different curvature metrics: MAPC, MAMC, MARC and MASC.

B. Generalization on ImageNet
To verify the generality of our results we analyzed the behavior of curvature along the layers of Resnet models trained on
Tiny Imagenet (Le & Yang, 2015) and Imagenet (Deng et al., 2009). The following sections describe the experiments and
results.

B.1. Tiny ImageNet

We trained ResNet18 models on the Tiny Imagenet dataset. The latter dataset is a subset of Imagenet containing 100k images
of 200 classes (500 images per class), downsized to 64 × 64 colored images. We computed the intrinsic dimension and
MAPC profiles, and we show the results in Fig. 9A. Importantly, the MAPC profile is extremely similar to the profiles we
demonstrated for CIFAR10 and CIFAR100 on the same architecture. Additionally, we show that the NMAPC gap remains
an indicator of the generalization ability. We computed the NMAPC gap with respect to the number of classes used for
training Fig. 10. Overall, we see a strong correspondence between the model performance and the NMAPC gap, similar to
the results attained on CIFAR10/CIFAR100.

B.2. ImageNet

In addition to our experiments on Tiny ImageNet, we also estimated the curvature of 100 different classes from the ImageNet
dataset for a total of 20k images. The profile we obtained on Imagenet Fig. 9B shares several of the key observations we
made in the paper. In particular, our Imagenet MAPC profile is generally increasing across layers, it is not correlated with
the intrinsic dimension, and it presents a (mild) jump in curvature at the last layer. These results generally align with the
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Figure 9. The intrinsic dimension and mean absolute principal curvature. A) ID and MAPC along the layers of ResNet18 trained on
Tiny ImageNet B) ID and MAPC along the layers of ResNet50 trained on ImageNet
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Figure 10. NMAPC gap with respect to the number of classes used for training. The color bar represents the achieved accuracy. There
is a correlation between the NMAPC gap and accuracy value

claims we made in our paper.

In conclusion, while there are some differences between the MAPC profile on Imagenet in comparison to CIFAR10,
CIFAR100, and Tiny Imagenet, the majority of our analysis and observations apply to all these different datasets, extending
across multiple architectures, models, and training protocols.

C. Intrinsic Dimension Estimators Effect on MAPC
To strengthen our claim that curvature is not necessarily correlated with dimensionality, we estimated the ID of latent data
representations computed with ResNet50 on CIFAR10 using the following methods: TwoNN (Facco et al., 2017), Maximum
Likelihood Estimation (MLE) (Pope et al.), and Persistent Homology Dimension (PHDim) (Birdal et al., 2021). We then
used the resulting ID values to estimate the curvature. We show the intrinsic dimension and MAPC shown in Fig. 11. Note
that the ID values may vary significantly while the MAPC profile remains stable and consistent with our previous results.
Further, note that the MAPC values do not correlate with the ID values. For instance, all ID profiles present a significant
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Figure 11. The effect of different ID estimation tools on curvature: A) the ID values may vary significantly while the MAPC profile
remains stable and consistent with our previous results. B) MAPC values do not correlate with the ID values.

drop in values toward the last layer, whereas the MAPC profiles do not change much. In conclusion, these results further
strengthen our claim that ID and MAPC are not correlated.

D. Data Density
Curvature estimates for high-dimensional and sparse point clouds are extremely noisy and unreliable. To alleviate this
issue, we aimed to (locally) increase the density of the data manifold. Our choice to use SVD is well-motivated from a
differential geometry viewpoint. Specifically, the SVD procedure we described in Sec. 3 is closely-related to computing a
first order approximation of the manifold at a point, and sampling at the neighborhood of the point. Sampled points may
slightly deviate from the data manifold, yet the deviation can be bounded by the absolute value of the modified singular
values (which are close to zero in practice). There are several works (Donoho & Grimes, 2003; Zhang & Zha, 2004; Singer
& Wu, 2012; Tyagi et al., 2013) that justify the usage of SVD for estimating the tangent plane of a manifold at a given
point p. In addition to the theoretical justification we provide for the SVD procedure, we investigated the proximity of the
generated neighborhood using affine transformations, k-nearest-neighbors and SVD, see Fig. 1 in the main text. The affine
transformations include rotations in the range of [−10, 10] degrees, shear parallel to the x and y axis in the range [−10, 10]
degrees, horizontal translation in the range [−.1w, .1h] where w, h are the image width and height, and vertical translation in
the range [.1w, .1h]. Using smaller values for the affine transformation parameters caused the curvature estimation algorithm
to fail. It is notable that the generated images using the SVD method create samples that are closer in an Euclidean distance
sense along all layers. Visually, the samples generated using the SVD method look almost identical to the original image
from which they were generated as can be seen in Fig. 12.

E. Estimating the Hessian Matrix
As discussed in Sec. 3 above, we wish to estimate the Hessian per embedding mapping fα where α = 1, . . . , D− d. This is
done by building a set of linear equations that solves Eq. 2:

fα(uij ) = fα(xi) + (uij − xi)
T∇fα +

1

2
(uij − xi)

THα(uij − xi) +O(|uij |22) ,

that is fα is approximated by solving the system fα = ΨXi, where Xi contains the unknown elements of the gradient ∇fα

and the hessian Hα. We define fα = [fα (ui1) , · · · , fα (uiK )]
T , where uij are points in the neighborhood of xi, projected

to the local natural orthogonal frame. The local natural orthonormal coordinate frame is defined as the basis associated with
the tangent space and normal space at a point p of the manifold. In practice, the coordinate frame is generated using PCA,
where the first d coordinates (associated with the most significant modes, i.e., largest singular values) represent the tangent
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Figure 12. Visualization of the neighborhood generation process. The first column to the left shows a sample from the CIFAR10 data
set. Each consecutive column shows the generated image using the SVD method where the number of singular values which were set to
zero increases from left to right. Note that nullifying a small amount singular values results in an image that is almost identical to the
original image (2nd and 3rd columns), while nullifying more singular values creates noticeable differences (4th column).

space, and the rest encode the normal space. Then, we define Ψ = [Ψi1 , · · · ,ΨiK ], where Ψij is given via

Ψij =

[
u1
ij , · · · , u

d
ij ,
(
u1
ij

)2
, · · · ,

(
ud
ij

)2
,
(
u1
ij × u2

ij

)
, · · · ,

(
ud−1
ij

× ud
ij

)]
.

We solve fα = ΨXi by using the least square estimation resulting in Xi = Ψ†fα, such that Xi =[
∇fα1, · · · ,∇fαd, Hα1,1, · · · , Hαd,d, Hα1,2, · · · , Hαd−1,d

]
, that is, we estimate only the upper triangular part of Hα

since it is a symmetric matrix. We do not use the elements of the gradient ∇fα for the CAML algorithm, it is only computed
as a part of the hessian Hα estimation. We refer the reader for a more comprehensive and detailed discussion in (Li, 2018).

F. Characteristic mean absolute principal curvature
We complement the results shown in Sec. 4.1, and we demonstrate the mean absolute principal curvature profiles for several
networks on CIFAR-10 test set and CIFAR-100 train set as shown in Fig. 13 in the left and right panels, respectively. In both
cases we observe the typical behavior described before: an initial sharp increase, followed by a flat phase, and ending with a
final increase. Notably, the maximum MAPC values for CIFAR-100 are lower in comparison to both CIFAR-10 train and
test sets. Moreover, the gap in the final increase in curvature is smaller for CIFAR-100. These results are consistent with our
discussion in Sec. 4.2.

G. Riemannian Geometry Background
This section contains the mathematical background necessary for understanding the curvature estimation process. A vast
knowledge in differential geometry is needed to fully comprehend the mathematical background listed below, we will not go
in to detail for all the tools we use but rather refer the reader to books on the subject, e.g., (Lee, 2006; Petersen, 2006).
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A BCIFAR-10 test CIFAR-100 train

Figure 13. MAPC profiles on various models and datasets. A) MAPC on six different networks on CIFAR-10 test set. B) MAPC on
those same models with CIFAR-100 train set.

G.1. Problem Statement

Let Y = {y1, y2, · · · , yN} ⊂ RD be the data on which we want to estimate the curvature. We assume that the data lies on a
d-dimensional manifold M embedded in RD where d is much smaller than D, thus, M can be viewed as a sub-manifold of
RD. Will will describe how to compute a second-order local approximation of the embedding map f : Rd → RD,

yi = f(xi) + ϵi , i = 1, . . . , N , (5)

where X = {x1, x2, · · · , xN} ⊂ Rd are low-dimensional representations of Y , and {ϵ1, ϵ2, · · · ϵN} are corresponding
noises.

G.2. Riemannian manifold

A manifold M is a topological space that locally resembles Eulidean space near each point. This is particularly useful to our
work since the manifold hypothesis states that complex high-dimensional data lies in an intrinsically low-dimensional
manifold.

Definition G.1 (Tangent Space). abs Let M ⊂ RD be a manifold where RD is the ambient space. For every point p ∈ M,
a tangent space is a vector space that represents the set of all vectors tangent to given differentiable manifold M at point p,
denoted by TpM.
Definition G.2 (Riemannian Manifold). A Riemannian manifold ⟨M, g⟩ is a manifold M endowed with an inner product
gp at the tangent space TpM at each point p that varies smoothly from point to point in the sense that if X and Y are
differentiable vector fields on M, then p 7→ gp(X(p), Y (p)) is a smooth function.
Definition G.3 (Riemann Curvature (Petersen, 2006)). Let ⟨M, g⟩ be a Riemannian manifold and ∇ the Riemannian
connection. The curvature tensor is a (1, 3)− tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z ,

on vector fields X,Y, Z. Using Riemannian metric g,R(X,Y )Z can be changed to a (0, 4)-tensor:

R(X,Y, Z,W ) = g(R(X,Y )Z,W ) .

Definition G.4 (Sectional Curvature (Petersen, 2006)). Let ⟨M, g⟩ be a Riemannian manifold, p ∈ M, u, v ∈ TpM are
two linearly independent tangent vectors, the sectional curvature of the plane Ru+ Rv will be defined as

K(u, v) =
R(u, v, u, v)

⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2
,

where R is the Riemann curvature tensor.
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G.3. Computation of the Riemann Curvature Tensor

Our next task is to compare the Riemannian curvature of M with that of ambient space M̃. According to the definition of
curvature tensor, we first give the relationship between the Riemannian connection ∇ of M and ∇̃ of M̃:

∇̃XY = ∇XY + B(X,Y ),

where the normal component is known as the second fundamental form B(X,Y ) of M. The second fundamental form
uncovers the extrinsic structure of a manifold M relative to ambient space M̃. How the manifold is curved with respect to
the ambient space is measured by the second fundamental form.

Theorem G.5 (The Gauss Equation (Lee, 2006)). For any vector fields X,Y, Z,W ∈ TM the tangent bundle of M, the
following equation holds:

R̃(X,Y, Z,M) = R(X,Y, Z,W )− ⟨B(X,W ), B(Y, Z)⟩+ ⟨B(X,Z), B(Y,W )⟩

where R̃ is the Riemann curvature tensor of M̃ and R is that of M. Riemannian curvature of the ambient space can be
decomposed into two components. In this paper the ambient space is Euclidean space RD, so R̃(X,Y, Z,W ) = 0 . In this
case, the Riemannian curvature of M is represented as:

R(X,Y, Z,W ) = ⟨B(X,W ),B(Y,Z)⟩ − ⟨B(X,Z),B(Y,W )⟩

To compute the value of the second fundamental form, we construct a local natural orthonormal coordinate frame{
∂

∂x1 , · · · , ∂
∂xd ,

∂
∂y1 , · · · , ∂

∂yD−d

}
of the ambient space M̃ at point p, the restrictions of

{
∂

∂x1 , · · · , ∂
∂xd

}
to M form

a local orthonormal frame of TpM). The last D − d orthonormal coordinates
{

∂
∂y1 , · · · , ∂

∂yD−d

}
form a local orthonor-

mal frame of Np(M). Under the locally natural orthonormal coordinate frame, the embedding map f is redefined as
f
(
x1, x2, · · · , xd

)
=
[
x1, x2, · · · , xd, f1, · · · , fD−d

]
, where x

.
=
[
x1, x2, · · · , xd

]
are natural parameters. Then the

second fundamental form B can be written as:

B
(

∂

∂xi
,

∂

∂xj

)
=

D−d∑
α=1

hα
ij

∂

∂yα

with hα
ij , (α = 1, · · · , D − d) being the second derivative ∂2

∂xi∂xi of embedding component function fα, which constitutes

the Hessian matrix Hα =
(

∂2

∂x2∂xj

)
, correspondingly, the Riemann curvature tensor of M is represented as:

Riljk =
D−d∑
α=1

(
hα
ikh

α
lj − hα

ijh
α
lk

)
.

It follows that to compute the Riemann curvature of Riemannian submanifold M, we only need to estimate the Hessian
matrix of the embedding map f . The Hessian matrix estimation is described in Sec. E.
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