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Abstract
Unsupervised disentanglement is a long-standing
challenge in representation learning. Recently,
self-supervised techniques achieved impressive
results in the sequential setting, where data is time-
dependent. However, the latter methods employ
modality-based data augmentations and random
sampling or solve auxiliary tasks. In this work,
we propose to avoid that by generating, sampling,
and comparing empirical distributions from the
underlying variational model. Unlike existing
work, we introduce a self-supervised sequential
disentanglement framework based on contrastive
estimation with no external signals, while using
common batch sizes and samples from the latent
space itself. In practice, we propose a unified,
efficient, and easy-to-code sampling strategy for
semantically similar and dissimilar views of the
data. We evaluate our approach on video, audio,
and time series benchmarks. Our method presents
state-of-the-art results in comparison to existing
techniques. The code is available at GitHub.

1. Introduction
One of the main challenges for modern learning frameworks
in tackling new tasks is the lack of high-quality real-world
labeled data. Unfortunately, labeling massive amounts of
data is a time-consuming process that typically requires
expert knowledge. Unsupervised learning is a modeling
paradigm for learning without labels, and thus it gained
increased attention in recent years (Sohl-Dickstein et al.,
2015). Recent approaches utilize the inputs as supervisory
signals (Chen et al., 2020a) and use pretext tasks (Misra &
Maaten, 2020), yielding highly-competitive self-supervised
learning (SSL) frameworks (Caron et al., 2020). The goal
of this paper is to study the effect of a novel SSL approach
on sequential disentanglement problems.

*Equal contribution 1Department of Computer Science, Ben-
Gurion University of the Negev, Beer-Sheva, Israel. Correspon-
dence to: Ilan Naiman <naimani@post.bgu.ac.il>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Data disentanglement is related to representation learning,
where semantic latent representations are sought, to be used
in various downstream tasks. A common goal in sequential
disentanglement is the factorization of data to time-invariant
(i.e., static) and time-variant (i.e., dynamic) features (Hsu
et al., 2017). Most sequential disentanglement approaches
for arbitrary data modalities such as video, audio, and time
series are unsupervised, modeling the task via variational
autoencoders (VAE) (Hsu et al., 2017; Yingzhen & Mandt,
2018; Han et al., 2021). Effectively, the static and dynamic
factors are obtained via separate posterior distributions.

Self-supervised learning appeared only recently in sequence
disentanglement works via supervisory signals, pretext tasks,
and contrastive estimation. However, existing SSL intro-
duces several shortcomings as it depends on the underlying
modality. In this work, modality refers to the properties
of the data or task. For instance, (Zhu et al., 2020) design
auxiliary tasks per data type, e.g., predict silence in audio
segments or detect a face in an image. Similarly, (Bai et al.,
2021) require positive and negative samples with respect
to the input, i.e., same-class and different-class examples,
respectively. In practice, positive views are obtained via
data-dependent data augmentation transformations such as
rotations and cropping, whereas negative views are selected
randomly from the batch. To increase the variability in the
batch, common solutions address these issues by increasing
the batch or creating a memory bank, resulting in high mem-
ory costs. In this work, we refer to the above approaches
as modality-based supervision methods, and we argue that
they can be avoided if the underlying model is generative.

To alleviate the above disadvantages, we design a novel
sampling technique, yielding a new contrastive learning
framework for disentanglement tasks of arbitrary sequential
data that is based on the following insights. First, variational
autoencoders naturally support the comparison of empiri-
cal distributions and their sampling. Second, we observe
that a sample may be contrasted with its subsequent VAE
prediction, leading to an increase in batch variability while
keeping its size fixed. Based on these observations, we will
show that we generate good positive and negative views.
We evaluate our method on several challenging disentan-
glement problems and downstream tasks, and we achieve
beyond state-of-the-art (SOTA) performance in comparison
to several strong baseline methods.
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Contributions. Our main contributions are listed below.

1. We observe that VAEs allow to compare and construct
empirical distributions while facilitating a contrastive
evaluation of samples and their prediction.

2. We propose a novel similarity and sampling technique
that exploits inherent properties of VAEs, is modality-
free, and it yields good views during training.

3. We present SOTA results on video, audio, as well as
time series data; our empirical evaluation includes data
and task modalities for which existing SSL approaches
are not necessarily effective, such as the Physionet ICU
dataset (Goldberger et al., 2000).

2. Related Work
Contrastive learning. Drawing two semantic views of the
same object closer already appeared in signature verification
systems (Bromley et al., 1993). However, issues such as
catastrophic collapse were identified in (Chopra et al., 2005)
i.e., learned views may “collapse” to a constant function,
yielding zero similarity but alas, non-useful representations.
To avoid collapse, they draw similar inputs closer, while
separating dissimilar inputs via a contrastive term. Gutmann
et al. (2010) suggested a popular and theoretically-sound
framework to discriminate between observed data and ar-
tificial noise, known as noise contrastive estimation. In
Contrastive Predictive Coding (CPC) (Oord et al., 2018),
the authors generate robust representations by contrasting
the predicted next frame. These results have been integrated
in vision tasks with frameworks such as SimCLR (Chen
et al., 2020a) and InfoMin (Tian et al., 2020). Recent works
suggest regularizing the loss (Tsai et al., 2021) and utilizing
contrastive learning losses (Zhu et al., 2021).

Contrastive sampling. Contrastive learning techniques
require semantically similar samples, as well as semantically
dissimilar samples. These examples are often referred to as
positive and negative examples, respectively. Often, positive
samples are obtained via data augmentation tools, whereas
negative samples are selected randomly (Le-Khac et al.,
2020). A recent study (Tian et al., 2020) devises optimality
conditions on positive views. Specifically, they show that
one should reduce the mutual information (MI) between
views while keeping task-relevant information intact. We
now describe several sampling approaches for positive and
negative views that can be considered as reducing MI.

As mentioned above, the majority of approaches use data
augmentation for positive sampling (Bachman et al., 2019;
Chen et al., 2020a). In (Sermanet et al., 2018), positive
examples are obtained from video frames of different views
for the same action, e.g., pouring coffee into a cup. A related
idea appeared in (Han et al., 2019), where given a collection
of videos, they generate samples by considering different

videos, and different locations/times within a video. (Ho
& Vasconcelos, 2020) use positive adversarial samples to
further enhance the effect of contrastive learning.

While significant attention was given to positive sampling
techniques, recent approaches focus on negative sampling
that goes beyond random selection from the batch (Doersch
& Zisserman, 2017) or from a memory bank (Wu et al.,
2018; Misra & Maaten, 2020; He et al., 2020). The main
issue with random sampling is that it may yield negative
examples which are actually positive, an issue known as
sampling bias (Chuang et al., 2020). To address the latter
problem, Kalantidis et al. (2020); Robinson et al. (2020)
construct negative samples by measuring their similarity
to the current sample. Recently, Ge et al. (2021) generate
negative examples with superfluous features, and similarly,
Huynh et al. (2022) aim at discarding semantic information
from negative samples. Ash et al. (2021) studied the effect
of the number of negative samples on performance. Finally,
a few techniques showed impressive results with no negative
examples at all (Chuang et al., 2020; Grill et al., 2020).

Disentanglement methods. Separating the underlying
factors of variation is a well-established research problem
on static image data (Kulkarni et al., 2015; Higgins et al.,
2016; Kim & Mnih, 2018; Chen et al., 2018). Disentangle-
ment of sequential data is an emerging field, and it focuses
on data factorization to static and dynamic factors. Hsu
et al. (2017) introduced unsupervised disentanglement of
sequential data via an LSTM-based model on audio data.
Later, Yingzhen & Mandt (2018) suggested DSVAE using
a similar LSTM architecture while adding a heuristic in
which the dynamic features’ dimension is small compared
to the static features’ size. Further, Tulyakov et al. (2018)
proposed an adversarial setup. S3VAE (Zhu et al., 2020)
improves DSVAE by adding mutual information penalties
on the relation between the static and dynamic features and
the input, and in addition, they used auxiliary signals. Han
et al. (2021) also suggested improving DSVAE by replacing
the Euclidean distance with a Wasserstein distance. Tonek-
aboni et al. (2022) use a VAE model to disentangle arbitrary
time series data. C-DSVAE (Bai et al., 2021) includes a
contrastive estimation of the mutual information losses in-
troduced by S3VAE. They employ data augmentations for
contrastive loss estimation, using a similar architecture as
S3VAE and DSVAE. Recent work by Berman et al. (2023)
developed structured Koopman autoencoders to promote
multifactor disentanglement of the sequential data to more
than two semantic components. Our work builds on the
architecture and objective of C-DSVAE while overcoming
some of its shortcomings. Specifically, we design a simple
framework for sampling good positive and negative samples.
Our approach is modality-free, i.e., it does not depend on
the data domain (video, audio, or time series), nor does it
depend on the task (e.g., images of faces or letter images).
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Contrastive disentanglement. Several works considered
contrastive estimation in the context of disentanglement of
latent factors (Lin et al., 2020; Li et al., 2021; Wang et al.,
2021). Here, we focus on disentanglement of sequential
data. For instance, Wei et al. (2022) employ a contrastive
triplet loss for unsupervised video domain adaptation. Self-
supervision in sequential disentanglement of arbitrary data
appeared only recently. Zhu et al. (2020) utilize auxiliary
tasks and supervisory signals, whereas Bai et al. (2021) use
contrastive estimation, following the standard augmentation
and random sampling for constructing positive and negative
examples, respectively, and using the infoNCE loss.

3. Background
Problem formulation. Given a dataset D = {xj

1:T }Nj=1

of time series sequences x1:T = {x1, . . . , xT } where the
index j is omitted for brevity, our goal is to find a posterior
distribution p(s, d1:T |x1:T ) of disentangled static and dy-
namic latent representations, s and d1:T respectively, such
that x1:T ∼ p(x1:T | s, d1:T ). We elaborate below on the
constraints and assumptions related to the factors and data.

Probabilistic modeling. Our discussion follows closely
existing works such as (Yingzhen & Mandt, 2018; Bai et al.,
2021). The static factor s and dynamic factors d1:T are
assumed to be independent, xi depends only on s and di,
and di depends on the previous dynamic factors d<i =
{d1, . . . , di−1}. Under these assumptions, we consider the
following joint distribution

p(x1:T , z) =

[
p(s)

T∏
i=1

p(di | d<i)

]
·

T∏
i=1

p(xi | s, di) , (1)

where z = (s, d1:T ). The prior distributions p(s) and
p(di | d<i) are taken to be Gaussian with p(s) := N (0, I)
and p(di | d<i) := N (µ(d<i), σ

2(d<i)).

The posterior distribution p(s, d1:T |x1:T ) disentangles
static from dynamic, and it is approximated via

q(z |x1:T ) = q(s |x1:T )

T∏
i=1

q(di | d<i, x≤i) , (2)

i.e., s is conditioned on the entire sequence, whereas di
depends on previous dj and inputs, and current inputs.

The variational autoencoder (VAE) (Kingma & Welling,
2014) relates the prior and approximate posterior distribu-
tions in a regularized reconstruction loss. For mutually
independent s and d1:T this loss takes the following form,

LVAE = λ1 Eq(z | x1:T ) log p(x1:T | z)
− λ2 KL[q(s |x1:T ) ∥ p(s)]
− λ3 KL[q(d1:T |x1:T ) ∥ p(d1:T )] ,

(3)

where KL[q ∥ p] is the Kullback–Leibler divergence that
computes the distance between distributions q and p, and
λ1, λ2, λ3 ∈ R+ are weight hyperparameters.

In practice, the likelihood p(xi | s, di) in Eq. (1), p(di | d<i)
and the terms q(s |x1:T ) and q(di | d<i, x≤i) in Eq. (2) are
all obtained via separate LSTM modules. Sampling from
the sequential distribution p(di | d<i) is achieved by using
the mean and variance the LSTM outputs when feeding
di−1, and similarly for q(di | d<i, x≤i). Finally, we use the
mean squared error (MSE) for reconstruction in Eq. (3) and
the KL terms are computed analytically. Further network
architectural details are given in App. A.3.

Mutual information disentanglement. Similar to the
catastrophic collapse observed in (Chopra et al., 2005), VAE
models may produce non-informative latent factors (Bow-
man et al., 2016). In sequential disentanglement tasks, this
issue manifests itself by condensing the static and dynamic
information into d1:T . An empirical heuristic has been
partially successful in mitigating this issue, where a low-
dimensional di and a high-dimensional s are used (Yingzhen
& Mandt, 2018), thus di is less expressive by construction.
However, a recent theoretical result (Locatello et al., 2019)
shows that unsupervised disentanglement is impossible if
no inductive biases are imposed on models and data. Thus,
to alleviate these challenges, several existing works (Zhu
et al., 2020; Han et al., 2021; Bai et al., 2021) augmented
model (3) with mutual information terms.

The main idea in introducing mutual information (MI) terms
is to separately maximize the relation in pairs (s, x1:T )
and (d1:T , x1:T ), while minimizing the relation of (s, d1:T ).
This idea is realized formally as follows (Bai et al., 2021),

LMI = λ4Iq(s;x1:T ) + λ4Iq(d1:T ;x1:T )− λ5Iq(s; d1:T ) ,
(4)

where Iq(u; v) = Eq(u,v) log
q(u | v)
q(u) . Combining the above

losses (3) and (4), the disentanglement model reads

max
p,q

Ex1:T∼pDLVAE + LMI , (5)

where pD is the empirical distribution of the dataset D. Bai
et al. (2021) shows that problem (5) is a proper evidence
lower bound (ELBO) of the log-likelihood of (1).

Estimating the MI terms is not straightforward. A standard
approach uses mini-batch weighted sampling (MWS) (Chen
et al., 2018). In contrast, Bai et al. (2021) approximated MI
terms via a contrastive estimation known as infoNCE,

LiNCE = log
ϕ(u, v+)

ϕ(u, v+) +
∑M

j=1 ϕ(u, v
j)

, (6)

where u is either the static factor or the dynamic features,
i.e., u ∈ {s, d1:T }. The samples v+ and vj correspond to
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positive and negative views with respect to u. For instance,
if u := s, then the static features v+ := s+ are similar
to s. The function ϕ(u, v) = exp(uT v/τ |u||v|) measures
the similarity between examples u and v, with τ = 0.5
being a temperature parameter (Chen et al., 2020a). It has
been shown that Iq(u;x1:T ) ≈ LiNCE(u) under relatively
mild conditions (Oord et al., 2018). Our model architecture
and objective function follow C-DSVAE (Bai et al., 2021),
while significantly improving their contrastive estimation by
proposing a novel sampling procedure as we detail below.

4. Method
Employing contrastive estimation (6) within a sequential
disentanglement framework requires positive and negative
views of s and d1:T for a given input x1:T . In practice, the
positive samples are obtained via modality-based data aug-
mentations such as cropping and color distortion for images,
voice conversion for audio data, and shuffling of frames for
general static augmentation. Negative views are obtained by
randomly sampling from the batch. See, for instance, (Zhu
et al., 2020; Bai et al., 2021). In this work, we argue that
while random sampling and data augmentations with the
infoNCE loss are popular tools for unsupervised learning
(Chen et al., 2020a; Tian et al., 2020), one should revisit the
core components of sequential contrastive learning. We will
show that existing practices for sampling of views and for
increasing the batch variation can be improved.

Shortcomings of views’ sampling. Creating semantically
similar and dissimilar examples is a challenging problem.
We distinguish between domain-modality and task-modality
sampling. In general, we will use the following definition
of X-modality. A method Y is X-modality-dependent if Y
depends on the characteristics of X . For instance, image
rotation (Y ) is domain-modality-dependent (X) as it will
probably be less effective for audio sequences. Similarly,
cropping of images (Y ) may not be effective for images of
letters, and thus it is task-modality-dependent (X). Namely,
task-modality-dependent approaches may require separate
sampling methods for the same data domain. In summary,
modality may mean multiple concepts depending on the
particular context, including the format of the data or its
statistical features. In general, we argue below that existing
disentanglement approaches are modality-based.

Existing studies show that the particular choice of DA can
significantly affect results (Chen et al., 2020b; Tian et al.,
2020; Zhang & Ma, 2022). Even shuffling of frames which
may seem robust, can yield wrong views in critical health-
care applications involving data with the vital measurements
of a patient. In conclusion, DA may heavily depend on do-
main knowledge and task expertise. DA which falls into
one of the categories above is referred to as modality-based

augmentations. To the best of our knowledge, the majority
of data augmentation tools are modality-based.

Constructing negative views may seem conceptually sim-
pler in comparison to positive views, however, it bears its
own challenges. Common methods select randomly from
the dataset (Doersch & Zisserman, 2017). To reduce the
sampling bias of false negative views (Chuang et al., 2020),
existing works suggest increasing batch sizes (Chen et al.,
2020a) or using a memory bank (Wu et al., 2018). Yet, the
memory footprint of these methods is limiting. To conclude,
both data augmentation and randomness should be avoided
in the construction of positive and negative views.

VAE-based sampling. Motivated by the above discussion,
we opt for an efficient modality-free sampling approach. We
make the following key observation:
variational autoencoders inherently support the formation,

comparison, and sampling of empirical distributions

Essentially, given a dataset D = {xj
1:T }Nj=1 of time series

sequences and model (3), we can generate the individual pos-
terior distributions {q(zj |xj

1:T )}Nj=1, compare them via the
Kullback–Leibler divergence, and sample zj ∼ q(zj |xj

1:T ).

We denote by x1:T the input for which we seek a positive
x+
1:T and several negative x−,j

1:T , j = 1, . . . ,M , examples.
Our discussion focuses on sampling static views {s+, s−,j},
however, a similar process can be performed for sampling
dynamic features. Intuitively, s+ is the factor such that the
distance KL[q(s |x1:T ) ∥ q(s+ |x+

1:T )] is minimal, where
x+
1:T ∼ pD. Similarly, s−,j are the features with maximal

KL value. However, a subtle yet important aspect of views is
the distinction between soft and hard samples. Soft negative
examples are those which contribute less to learning as they
are too dissimilar to the current sample, whereas hard views
are the semantically-dissimilar examples that are close in
latent space to x1:T (Kalantidis et al., 2020; Robinson et al.,
2020). How would one obtain good views with large batch
variability given the above observation?

To increase variation while avoiding memory banks and
large batch sizes, we suggest to use the (non-increased)
batch itself. Let q̃k(s |x1:T ) denote the partially-trained
posterior after k epochs of training. We denote by D ∈
Rn×n the pairwise KL divergence distances matrix for a
batch of size n, {xj

1:T }nj=1. Namely,

Dij := KL[q̃(si |xi
1:T ) ∥ q̃(sj |x

j
1:T )] , (7)

where i, j ∈ {1, . . . , n} and we omit the training epoch
for brevity. For a particular example in the batch xi

1:T ,
we generate good views based on the following heuristic.
We sort the row Di: in ascending order, and we sample
positive views from the first third of distributions, whereas
negative views are sampled from the last third. We denote
by S+(i) = {q̃(sj |xj

1:T )} the set of positive distributions,
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encoder

decoder

A

s

S+

S−

B

s, d1:T

s̃+

s̃−,j

d̃1:T

d̃j1:T

x+
1:T

x−,j
1:T

s+

s−,j

S+

S−

p

p

p

p

q

q

LiNCE

LiNCE

Figure 1. A) To generate positive and negative static views of s, we collect the closest S+ and farthest S− distributions in the batch.
We sample from these distributions using the reparameterization trick. B) Unfortunately, samples from the batch have limited variation
(dashed red rectangle), and thus we use our predictive sampling trick, generating samples by using the posterior of the sampled prior.

and similarly, S−(i) holds the negative distributions. See
Fig. 1 for an illustration of these definitions.

Predictive sampling trick. Unfortunately, as usual batch
sizes are relatively small, it may occur that variability is
limited in the original batch. Notice that soft positive views
always exist via the posterior of the sample itself, and soft
negatives probably exist as well for moderate batch sizes,
e.g., for n = 16, 32. However, it is not clear whether hard
views exist in the batch, and thus its variability may need
to be increased. To improve variability, we introduce our
predictive sampling trick.

Again, w.l.o.g. we focus on the setting of sampling static
views of a given example x1:T with its static and dynamic
features s and d1:T . To increase the variability in the views,
our predictive sampling trick generates these examples from
the posterior of the sampled prior. For instance, to produce
a positive static view, we denote s̃+ ∼ S+. The dynamic
features can be arbitrary, and thus we sample from the prior
d̃1:T ∼ p(d1:T ). The positive instance x+

1:T is defined via
x+
1:T ∼ p(x+

1:T | s̃+, d̃1:T ). We obtain the positive static
view by sampling the posterior, i.e.,

s+ ∼ q(s+ |x+
1:T ) . (8)

A similar process is used to compute s−,j , j = 1, . . . ,M .
These views {s+, s−,j} are utilized in LiNCE(s, s

+, s−,j),
see the diagram of our predictive sampling in Fig. 1B. We
find that our views’ heuristic and predictive sampling trick
yield soft to semi-soft positive examples and semi-hard
to hard negative examples, see Sec. 5.6. For additional
implementation details, see App. B.

Our approach is based on the implicit assumption that the
underlying model (3) encourages similar examples to be
close and dissimilar views to be farther apart. Indeed, previ-
ous work on this model (Yingzhen & Mandt, 2018) showed
this tendency when using large s and small di. Thus, our
approach can be viewed as promoting the natural tendency
of the model to separate positive and negative views.

5. Results
5.1. Datasets and Methods

In our evaluation, we consider several datasets of different
modalities, and we compare our results with several state-of-
the-art approaches. Specifically, we test on video datasets
such as Sprites (Reed et al., 2015) and MUG (Aifanti et al.,
2010) containing animated cartoon characters and subjects
performing facial expressions, respectively. Moreover, we
also use the Jester dataset (Materzynska et al., 2019) with
videos of hand gestures, and the Letters corpus (Ibrahim
et al., 2019) with handwritten text. For audio, we experi-
ment with TIMIT (Garofolo et al., 1992). Finally, we also
explore time series datasets including Physionet (Goldberger
et al., 2000) with individual medical records and Air Quality
(Zhang et al., 2017) with measurements of multiple air pollu-
tants. We compare our results to sequential disentanglement
frameworks including MoCoGan (Tulyakov et al., 2018),
FHVAE (Hsu et al., 2017), DSVAE (Yingzhen & Mandt,
2018), R-WAE (Han et al., 2021), S3VAE (Zhu et al., 2020),
SKD (Berman et al., 2023), C-DSVAE (Bai et al., 2021),
and GLR (Tonekaboni et al., 2022). See App. A for details.

5.2. Hyperparameters

To control the contribution of each loss component we add
a λ1 coefficient to the reconstruction loss, a λ2 to the static
KL term, a λ3 to the dynamic KL term, and finally λ4, λ5

to the contrastive terms. The hyperparameter λ1 is tuned
over {1, 2.5, 5, 10}, λ2 is tuned over {1, 3, 5, 7, 9}, and λ4

and λ5 are tuned over {0.1, 0.5, 1, 2.5, 5} while λ3 is fixed
to 1. We used Adam optimizer (Kingma & Ba, 2014) with
the learning rate chosen from {0.001, 0.0015, 0.002}. The
static and dynamic features’ dimensions are selected from
{128, 256} and {32, 64}, respectively. These dimensions
are similar or sometimes smaller in comparison to all other
benchmark models such as C-DSVAE, S3VAE, DSVAE, R-
WAE. We highlight that tuning multiple hyperparameters is
often challenging. Hence, we utilize automatic tuning tools,
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A B

1 2

3 4

Figure 2. Content and pose swap results in Sprites (A) and MUG (B) datasets. See the text for additional details.

using 5 to 10 runs for each dataset. The hyperparameters for
each task and dataset are given in Tab. 6 in the Appendix.
All the tasks were trained for at most 600 epochs.

5.3. Qualitative Results

We begin our evaluation with qualitative examples showing
the disentanglement capabilities of our approach in Fig. 2.
Specifically, given source and target samples, xsrc

1:T , x
tgt
1:T ,

we swap the static and dynamic features between the source
and the target. In practice, swapping the content (static)
information corresponds to generating an image with factors
(stgt, dsrc

1:T ), i.e., fix the source dynamics and use the static
factor of the target. For instance, a perfect content swap in
Sprites yields different characters with the same pose. The
opposite swap of pose (dynamic) information is obtained
with (ssrc, dtgt

1:T ). Fig. 2 shows two separate examples of
Sprites and MUG (rows 1, 2 and rows 3, 4), where each
example is organized in blocks of four panels. For instance
on the Sprites example, panel no. 1 is the source and panel
no. 2 is the target. Panel no. 3 shows a content (static) swap,
and Panel no. 4 shows a pose (dynamic) swap.

5.4. Quantitative Results: Common Benchmarks

Image data. Similar to previous work (Zhu et al., 2020;
Bai et al., 2021), we test our model disentanglement and
generative abilities on the Sprites and MUG datasets, and we
compare our results with state-of-the-art (SOTA) methods.
The evaluation protocol takes a sample x1:T with its static
and dynamic factors, s and d1:T , and generates a new sample
x̃1:T with the original dynamic features, and a new static
component sampled from the prior, s̃ ∼ p(s). Ideally, we
expect that x1:T , x̃1:T share the dynamic labels, e.g., happy
in MUG, whereas, their static classes match with probability
close to random guess. To verify that this is indeed the case,
we use a pre-trained classifier to predict the dynamic label
of x̃1:T , and we compare it to the true label of x1:T .

We utilize these labels on several different error metrics:
label accuracy (Acc), inception score (IS) that estimates the
generator performance, intra-entropy H(y|x) that shows

how confident the classifier is regarding its prediction, and
inter-entropy H(y) that measures diversity in generated
samples, see also App. A. Our results are provided in Tab. 1,
alongside the results of previous SOTA approaches. The
arrows ↑, ↓ next to the metrics denote which metric is ex-
pected to be higher or lower in value, respectively. Notably,
our method outperforms existing work on Sprites and MUG
datasets with respect to all metrics. Finally, one may also
consider the opposite test where the static factor is fixed
and the dynamic features are sampled. However, the SOTA
methods achieve near perfect accuracy in this setting, and
thus, we do not show these results here.

Audio data. Another common benchmark demonstrates
the effectiveness of sequential disentanglement frameworks
on a different data modality (Hsu et al., 2017; Yingzhen &
Mandt, 2018). Specifically, we consider speaker verification
on the TIMIT dataset. The main objective is to distinguish
between different speakers, independently of the text they
read. For a sample x1:T , we expect that its static factor
s represents the speaker identity, whereas d1:T should not
be related to that information. We use the Equal Error
Rate (EER) metric where we compute the cosine similarity
between all s instances and independently for d1:T instances.
Two static vectors encode the same speaker if their cosine
similarity is higher than a threshold ϵ ∈ [0, 1], and different
speakers otherwise. The threshold ϵ needs to be calibrated
to receive the EER (Chenafa et al., 2008). Tab. 1 shows that
our approach improves SOTA results by a margin of 0.62%
and 1.41% for the static and dynamic EER. For additional
info on this benchmark, see App. B.5.

Time series data. Recently, (Tonekaboni et al., 2022)
explored their approach on downstream tasks with time
series data. Sequential information different from image
and audio is an ideal test case for our framework as we
lift the dependency on data augmentation (DA) techniques.
Indeed, while DA is common for image/audio data, it is
less available for arbitrary time series data. We follow the
evaluation setup in (Tonekaboni et al., 2022) to study the
latent representations learned by our method. Specifically,
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Table 1. Disentanglement metrics on Sprites, MUG, and TIMIT. Results with standard deviation appear in B.6.

Sprites MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192 63.12% 4.332 0.183 1.721
DSVAE 90.73% 8.384 0.072 2.192 54.29% 3.608 0.374 1.657
R-WAE 98.98% 8.516 0.055 2.197 71.25% 5.149 0.131 1.771
S3VAE 99.49% 8.637 0.041 2.197 70.51% 5.136 0.135 1.760
SKD 100% 8.999 1.6e−7 2.197 77.45% 5.569 0.052 1.769
C-DSVAE 99.99% 8.871 0.014 2.197 81.16% 5.341 0.092 1.775

Ours 100% 8.942 0.006 2.197 85.71% 5.548 0.066 1.779

TIMIT
Method static EER↓ dynamic EER ↑
FHVAE 5.06% 22.77%
DSVAE 5.64% 19.20%
R-WAE 4.73% 23.41%
S3VAE 5.02% 25.51%
SKD 4.46% 26.78%
C-DSVAE 4.03% 31.81%

Ours 3.41% 33.22%

we used an encoder and a decoder to compute codes of
consecutive time series windows, and we extract these codes
on non-stationary datasets such as Physionet and air quality.

We consider the following tasks: 1. prediction of the risk of
in-hospital mortality, and 2. estimation of the average daily
rain level. For each task, we train a simple RNN classifier in
which we utilize the latent representations from the above
autoencoder. For comparison, Tonekaboni et al. (2022) used
C-DSVAE without data augmentation and thus with no con-
trastive estimation losses. However, as noted in the above
paragraph, our approach does not have this limitation, and
thus we can utilize the entire model (5). Tab. 2 shows the
results on the mortality rate and daily rain downstream tasks.
Our method performs on par with GLR on the mortality rate
task, and it comes second for daily rain estimation. How-
ever, it is important to emphasize that GLR was designed
specifically for time series data with statistical properties
as in Physionet and Air Quality datasets. In contrast, our
method is not tuned to specifically handle time series data,
and it can work on multiple data modalities such as video,
audio, and time series data. Further, In our experimental
setup, we were not able to re-produce the baseline results
for the daily rain task. We leave this direction for further
exploration. For more details regarding the evaluation setup
and tasks, we refer to (Tonekaboni et al., 2022).

5.5. Quantitative Results: New Benchmarks

The standard sequential disentanglement benchmark tests
include classification of conditionally generated images and
speaker verification. Here, we propose a new benchmark
that quantifies the quality of the learned representations.
For this evaluation, we consider the MUG dataset, and two
challenging video datasets with hand writing (Letters) and
hand gestures (Jesters). In this experiment, we explore
a common framework to evaluate the disentangled codes.
First, we compute the static {sj} and dynamic {dj1:T } codes
of the test set. Then, we define train and test sets via an 80−
20 split of the test set, and we train four classifiers. The first
classifier takes s vectors as inputs, and it tries to predict the
static label. The second classifier takes s and it predicts the

dynamic label. Similarly, the third classifier takes d1:T and
predicts the static label, and the fourth classifier takes d1:T
and predicts the dynamic label. An ideal result with input s
is a prefect classification score in the first classifier, and a
random guess in the second classifier. Additional details on
this experiment appear in B.9. Our results are summarized
in Tab. 3, where we outperform C-DSVAE often by a large
gap in accuracy. The Jesters dataset does not include static
labels, and thus we only have partial results. Further, this
dataset is extremely challenging due to low-quality images
and complex gestures, and currently, C-DSVAE and our
approach obtain low scores, where our approach attains
> 7% improvement over a random guess. These results
can be improved by integrating recent VAEs (Razavi et al.,
2019; Vahdat & Kautz, 2020), as we observe low quality
reconstruction, which may effect disentanglement abilities.

5.6. Analysis of Positive and Negative Views

Sec. 3 details how to incorporate contrastive learning in a
sequential disentanglement setting, and in Sec. 4, we list
some of the challenges such as sampling wrong positive and
negative views. Here, we would like to empirically compare
the views generated by C-DSVAE and our approach. For
instance, we show a qualitative example in Fig. 3A of views
used in C-DSVAE and obtained with SimCLR (Chen et al.,
2020a), where positive dynamic examples are generated via
e.g., color distortion while supposedly keeping the dynamic
features fixed. Unfurtunately, not all DA preserve the facial
expressions. Beyond these qualitative examples, we also
adapt the analysis (Tian et al., 2020) as detailed below.

Table 2. Error metrics on Physionet and Air quality datasets
ICU Mortality Prediction Avg. Daily Rain

Method AUPRC AUROC MAE

VAE 0.157± 0.053 0.564± 0.044 1.831± 0.005
GPVAE 0.282± 0.086 0.699± 0.018 1.826± 0.001
C-DSVAE 0.158± 0.005 0.565± 0.007 1.806 ± 0.012
GLR 0.365± 0.092 0.752± 0.011 1.824± 0.001

Ours 0.367 ± 0.015 0.764 ± 0.040 1.823± 0.001
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Table 3. Downstream classification task on latent static and dynamic features. Results with standard deviation appear in B.9.

Static features Dynamic features
Dataset Method Static L-Acc ↑ Dynamic L-Acc ↓ Gap ↑ Static L-Acc ↓ Dynamic L-Acc ↑ Gap ↑

MUG
random 1.92% 16.66% - 1.92% 16.66% -
C-DSVAE 98.75% 76.25% 22.25% 26.25% 82.50% 56.25%
Ours 98.12% 68.75% 29.37% 10.00% 85.62% 75.62%

Letters
random 1.65% 3.84% - 1.65% 3.84% -
C-DSVAE 95.47% 13.0% 82.47% 2.79% 66.35% 63.56%
Ours 100% 12.16% 87.84% 3.06% 69.75% 66.69%

Jesters
random - - - - 20% -
C-DSVAE - - - - 21.88% -
Ours - - - - 27.70% -

Let x1:T ∼ pD denote a data sample with its static and
dynamic factors, (s, d1:T ). A positive static example x+

1:T

is generated using the pair (s+, d̃1:T ) where s+ is similar
to s, and d̃1:T is different from d1:T . In the opposite case of
a positive dynamic sample, the dynamic features d+1:T are
similar to d1:T and s̃ is different from s. Following Tian et
al. (2020), a good view is such that the mutual information
Iq(s

+; y) is high, whereas Iq(d̃1:T ; y) is low, where y is
the task label. For example, the identity of the person is
kept, while its facial expression has changed. To estimate
these MI terms, we use the latent codes in classification
tasks as in Sec. 5.5 where the static and dynamic factors are
predicted. Namely, we use s+ to predict the static labels,
and similarly, we use d̃1:T to predict the dynamic labels.
Good views will yield high static classification scores and
low dynamic classification scores.

We show in Fig. 3B the classification results when using
(s+, d̃1:T ) with C-DSVAE and with our method, and Fig. 3C
shows the opposite case, i.e., (s̃, d+1:T ). For both plots, blue
curves are related to our approach and red curves correspond
to C-DSVAE. We focus on the test which uses (s+, d̃1:T ),
Fig. 3B. The blue and red curves show the classification
accuracy when using s+ to predict the static label, and thus,
they should be high. In contrast, the light blue and orange
curves arise from using d̃1:T to predict the dynamic labels,
and thus, they should be close to a random guess for semi-
hard views (16.66% in MUG). However, the orange curve
is around 70%, whereas the light blue attains≈ 30%. These
results indicate that our views are semi-hard as they yield
accuracy results close to a random guess. In the opposite
scenario, Fig. 3C, we use the pair (s̃, d+1:T ) with different
static and similar dynamic factors. Here, the blue and red
curves should be close to a random guess (1.92%), and the
light blue and orange plots should present high accuracy val-
ues. However, the orange curve presents ≈ 25% accuracy,
whereas ours is around 70%. We conclude that our dynamic
features better preserve the underlying action. Additional
analysis and results are provided in App. B.4.

5.7. Ablation Study: Negative Views Sampling

The previous evaluation in Sec. 5.6 focused on the quality
of positive views. Here, we explore the effect of utilizing
various negative sampling rules. Ultimately, we would like
to empirically motivate the heuristic we introduce in Sec. 4
where we propose to only consider 33.3% of the farthest
distributions as measured by the KL divergence distance.
An inferior heuristic is one that produces confusing negative
views, i.e., examples that are semantically similar to the
current data, instead of being dissimilar. However, choosing
“right” negative views is important to the overall behavior of
the approach, and thus we explore other sampling policies in
the following ablation study. For a meaningful comparison,
we fix the hyperparameters of the approach, and we train
several models that only differ in their selection strategy of
the negative views. Let n the number of inputs in the batch;
we define a pool of size ⌊n/3⌋ of negative distributions
taken from: 1) the middle third, 2) the farthest third, and
3) both middle and farthest thirds, and 4) random sampling.
From these distributions we sample 2n views. We present
in Tab. 4 the results of our ablation study on the MUG
and TIMIT datasets. For MUG, we show the accuracy
score, and we display the EER gap in TIMIT. Notably, all
sampling strategies attain SOTA results on these tasks, cf.
Tab. 1. However, the farthest third yields the best results
consistently across tasks, and thus, these results support
our heuristic. In App. B.2, we conduct an analysis that
motivates and justify our heuristic by showing the similarity
distribution of the thirds.

Table 4. Negatives Ablation Study.
Negatives Mode Acc MUG↑ EER gap TIMIT↑
Random 84.18% 28.53%
Middle Third 84.43% 29.11%
Middle+Farthest 84.96% 29.53%
Farthest Third 85.71% 29.81%
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A B C

Figure 3. We present randomly selected views of SimCLR on MUG (A). In addition, we compare the quality of views obtained with
C-DSVAE and our approach when classifying the static and dynamic labels (B, C). See the text for more details.

6. Limitations
Our model achieves SOTA results on several sequential
disentanglement benchmarks. While the method relies on
heuristics such as initial disentanglement by restricting the
dimensions of s and d1:T , and the methodology of selecting
negative and positive samples, it is backed up with exten-
sive empirical results that show the significance of each
component and the robustness of the method to different
modalities. Our model uses a similar number of hyperpa-
rameters as existing work. Tuning several hyperparameters
may be challenging in practice. Nevertheless, we utilized
automatic tuning tools, such as hyperopt, to search for the
best parameter values within the predefined hyperparameter
space. Finally, similar to existing disentanglement works,
we used pre-trained classifiers to evaluate our approach. In
general, we believe that the sequential disentanglement com-
munity will benefit from new challenging benchmarks that
depend on improved evaluation metrics.

7. Discussion
In this work, we investigated the problem of unsupervised
disentanglement of sequential data. Recent SOTA methods
employ self-supervision via auxiliary tasks and DA which
unfortunately, are modality-based. Namely, they depend
on the domain-modality (e.g., videos), on the task-modality
(e.g., classifying expressions), or on both. In contrast, we
propose a contrastive estimation framework that is free of
external signals, and thus is applicable to arbitrary sequential
data and tasks. Key to our approach is the observation that
VAEs naturally support the generation, comparison, and
sampling of distributions. Therefore, effective sampling
strategies for generating positive and negative views can
be devised based solely on the batch inputs. Our method
is easy to code, efficient, and it uniformly treats similar
and dissimilar views. Our extensive evaluation shows new
SOTA results on multiple datasets including video, audio

and arbitrary time series and on downstream tasks as speaker
verification, unconditional generation, and prediction.

In the future, we would like to explore the interplay between
the mutual information loss components. Essentially, these
terms are contradicting in nature, and thus, it motivates us
to find improved formulations. Moreover, we would like
to investigate whether sampling strategies as our method
can be effective for non-sequential contrastive estimation on
e.g., static images. We believe that this is a very interesting
direction for future research and that with some adaptions,
our method can contribute to contrastive learning of static
information as well. Finally, we aim to tackle challenging
datasets as Jesters using improved VAE pipelines.
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A. Experimental Setup
A.1. Datasets

Sprites. A dataset introduced by (Reed et al., 2015) that includes animated cartoon characters that have both static and
dynamic attributes. The static attributes include variations in skin, tops, pants, and hair color, each of which has six possible
options. The dynamic attributes consist of three different types of motion (walking, casting spells, and slashing) that can
be performed in three different orientations (left, right, and forward). In total, there are 1296 unique characters that can
perform nine different motions. Each sequence in the dataset consists of eight RGB images with a size of 64× 64 pixels. In
our experiments, we use 9000 samples for training and 2664 samples for testing.

MUG. A Facial expression dataset created by (Aifanti et al., 2010) that includes image sequences of 52 subjects displaying
six different facial expressions (anger, fear, disgust, happiness, sadness, and surprise). Each video in the dataset consists of
between 50 and 160 frames. In order to create sequences of length 15, as was done in previous work (Bai et al., 2021), we
randomly select 15 frames from the original sequences. We then use Haar Cascades face detection to crop the faces and
resize them to 64× 64 pixels, resulting in sequences x ∈ R15×3×64×64. The final dataset consists of 3429 samples.

TIMIT. A dataset introduced by (Garofolo et al., 1992) which consists of read speech that is used for acoustic-phonetic
research and other speech tasks. It contains 6300 utterances (5.4 hours of audio). There are 10 sentences per speaker, for
a total of 630 speakers. The dataset includes adult men and women. For the data pre-processing, we follow the same
procedure as in prior work (Yingzhen & Mandt, 2018). We extract spectrogram features (10ms frame shift) from the audio,
and we sample segments of 200ms duration (20 frames) from the audio, which are used as independent samples.

Jester. A dataset introduced by (Materzynska et al., 2019). The Jester dataset comprises of 148.092 labeled video segments
of more then 1300 unique individuals making 27 simple, predefined hand gestures in front of a laptop camera or webcam.
The gestures are labeled whereas the subject is not, and thus the dataset contains only dynamic labels. This dataset is
significantly more complex in comparison to MUG since there are variations in the background, light, and pose, and more
elements in the image are much bigger. We used five gestures (Pushing Hand Away, Rolling Hand Forward, Shaking Hand,
Sliding Two Fingers Left, Sliding Two Fingers Right). We extracted videos with 10 frames where the gap between two
frames has been selected by taking the total sequence length divided by 10.

Letters. The Letters dataset (Ibrahim et al., 2019) comprises of English letters and numbers written by 66 individuals,
both offline and online handwritten letters. In our setup, we utilized only small English letters (a-z) from the offline subset
of the dataset. We created a lexicon of 100 words, each consisting of seven letters, and then we generated word sequences
using images of the letters. As an example, a sequence may appear as ”science”. We excluded subject number ’61’ due to
missing data and generated 100 word sequences using the handwriting of the remaining 65 subjects. Each subject has two
samples for each letter, which were randomly selected.

Physionet. The Physionet ICU Dataset (Goldberger et al., 2000) is a medical time series corpus of 12.000 adult patients’
stays in the Intensive Care Unit (ICU). The data includes time-dependent measurements such as physiological signals and lab
measurements as well as general information about the patients, such as their age, the reason for their ICU admission, and
etc. Additionally, the dataset includes labels that indicate in-hospital mortality. For pre-processing we follow (Tonekaboni
et al., 2022).

Air Quality. The UCI Beijing Multi-site Air Quality dataset (Zhang et al., 2017) was collected over four years from March
1st, 2013 to February 28th, 2017. It includes hourly measurements of multiple air pollutants from 12 nationally controlled
monitoring sites. The meteorological data in each air-quality site are matched with the nearest weather station from the
China Meteorological Administration. For our experiments we follow (Tonekaboni et al., 2022) and pre-process the data by
dividing it into samples from different stations and of different months of the year.

A.2. Disentanglement Metrics

Accuracy (Acc). This is a metric that measures the ability of a model to preserve fixed features while generating others.
For instance, freeze the dynamic features and sample the static features. The metric computed by using a pre-trained
classifier (called C or the ”judge”). The classifier training has been on the same train set of the model and testing is on the
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same test set as of the model. For example, for the MUG dataset, the classifier would output the facial expression and check
that it did not change during the static features sampling.

Inception Score (IS). This is a metric for the generator performance. First, we apply the judge on all the generated
sequences x1:T . Thus, getting p(y |x1:T ) which is the conditional predicted label distribution. Second, we take p(y) which
is the marginal predicted label distribution and we calculate the KL-divergence KL[p(y |x1:T ) ∥ p(y)]. Finally, we compute
IS = exp(ExKL[p(y |x1:T ) ∥ p(y)]).

Inter-Entropy (H(y|x)). This metric reflects the confidence of the classifier C regarding label prediction. Low Intra
Entropy means high confidence. We measure it by entering k generated sequences into the classifier and computing
1
k

∑k
i=1 H(p(y|xi

1:T )).

Intra-Entroy (H(y)). This metric reflects the diversity among the generate sequence. High Intra-Entropy score means
high diversity. It is computed by taking the generated sample from the learned prior distribution p(y) and then using the
judge output on the predicted labels y.

Equal Error Rate (EER). This metric is used in the TIMIT dataset for speaker verification task evaluation. It measures
the value of the false negative rate, or equally, the value of the false positive rate of a model over the speaker verification
task. EER is measured when the above rates are equal.

Latent Accuracy (L-Acc). This metric measures the ability of a model to generate meaningful latent features for a
downstream classification task. For instance, for the MUG dataset, taking the static latent factor s of a sample x and trying
to predict the subject label or the facial expression label. In such case, a meaningful and disentangled model will produce
static features that will contain information about the subject label but not on the facial expression label of x. We compute
the prediction accuracy by training a Support Vector Machine Classifier for the static and dynamic features. We flatten the
dynamic features d1:T into one vector d, that is, assuming di ∈ Rk and i = 1, ..., T . Then the dimension of the flattened
vector d is k × T . The exact dimension changes between dataset types. We split the test set data into two parts (80-20) and
use its first part to train the different classifiers and the second one to evaluate the prediction accuracy. Finally, we also train
a Random Forest Classifier and KNN Classifier to show the robustness of the benchmark to the classifier choice.

Table 5. Image Model Architecture.
Encoder

Input: 64× 64× 3 image
Conv2D(3, 32, 4, 2, 1)

Conv2D(32, 64, 4, 2, 1)
Conv2D(64, 128, 4, 2, 1)

Conv2D(128, 256, 4, 2, 1)
Conv2D(256, 128, 4, 2, 1)

Where each Conv2D layer is followed by BN2D and LeakyReLU activation
Bidi-LSTM(128, 256)

sµ = Linear(512, ds), slog(σ) = Linear(512, ds)
RNN(512, 256)

dµ1:T = Linear(256, dd), d
log(σ)
1:T = Linear(256, dd)

Decoder

Reparameterize to obtain s and d1:T
concat (s, d1:T ) = z with dz dimension size

Conv2DT(dz, 256, 4, 1, 0)
Conv2DT(256, 128, 4, 1, 0)
Conv2DT(128, 64, 4, 1, 0)
Conv2DT(64, 32, 4, 1, 0)

Where each Conv2DT layer is followed by BN2D and LeakyReLU activation
Output: Sigmoid(Conv2DT(32, 3, 4, 1, 0))
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A.3. Model Architecture

All the models have been implemented using Pytorch (Paszke et al., 2019). The Conv2D and Conv2DT denote a 2D
convolution layer and its transpose, and BN2D is a 2D batch normalization layer.

Image Datasets. Our image model architecture follows (Zhu et al., 2020) implementation. The static latent distribution
variables sµ, slog(σ) are parameterized by taking the last hidden state of a bi-directional LSTM and propagating it through
linear layers. The dynamic latent distribution variables dµ1:T , d

log(σ)
1:T are given by propagating the hidden states of the

bi-directional LSTM through a RNN and then Linear layers. In Tab. 5 we describe the encoder and the decoder of our model.
Sprites, MUG, Letters, and Jesters, share the same architecture. We denote the dimension of d1:T by dd, and s dimension as
ds. The values are chosen per dataset and reported in Tab. 6.

Audio Datasets. The architecture of the TIMIT dataset model follows (Yingzhen & Mandt, 2018) and was used by the
previous methods (Zhu et al., 2020; Bai et al., 2021). The only difference from the image architecture is the removal of
the convolutions from the encoder and the replacement of the decoder with two linear layers. The first linear layer input
dimension is dz and its output dimension is 256 followed by LeakyReLU activation. Finally, we feed the second linear layer
followed by LeakyReLU activation and its output dimension is 200.

Time Series Datasets. The architecture of the time series dataset is simpler. The encoder is composed of 3 linear layers,
Linear(10, 32) → Linear(32, 64) → Linear(64, 32) with ReLU activations after each linear layer followed by similar
architecture from image models (Bidi-LSTM etc.) to model sµ, slog(σ), dµ1:T , dlog(σ)1:T . The decoder is composed of a Linear
layer that projects the latent codes onto a dimension of size 32, followed by tanh activation. Then, the output is propagated
through an LSTM with a hidden size of 32. We feed the output of the LSTM to 2 linear layers, each followed by a ReLU
activation, Linear(32, 64) and Linear(64, 32). Finally, we project the output onto 2 linear layers to produce the mean and
covariance from which we sample the final output. This architecture follows (Tonekaboni et al., 2022).

A.4. Hyperparameters

We estimate the following objective function:

max
p,q

Ex1:T∼pDλ1Eq(z | x1:T ) log p(x1:T | z)

− λ2KL[q(s |x1:T ) ∥ p(s)]− λ3KL[q(d1:T |x1:T ) ∥ p(d1:T )]
+ λ4Iq(d1:T ;x1:T ) + λ4Iq(s;x1:T )− λ5Iq(s; d1:T )

(9)

To control the contribution of each loss component we add λ1 coefficient to the reconstruction loss, λ2 for static KL
term, λ3 for the dynamic KL term, and finally λ4, λ5 to the contrastive terms. The hyperparameter λ1 is tuned over
{1, 2.5, 5, 10}, we do not divide the MSE loss by the batch size. λ2 is tuned over {1, 3, 5, 7, 9}, and λ4 and λ5 are tuned
over {0.1, 0.5, 1, 2.5, 5} while λ3 is fixed to 1. We used Adam optimizer (Kingma & Ba, 2014) with the learning rate chosen
from {0.001, 0.0015, 0.002}. The dimensions of the static and dynamic features which were chosen among {128, 256} for
the static and {32, 64} for the dynamic factors. Our optimal hyperparameters for each task and dataset are given in Table. 6.
All the tasks were trained for at most 600 epochs.

Table 6. Hyperparameters for all datasets, lr and bsz are abbreviations for learning rate and batch size, respectively.

Dataset λ1 λ2 λ3 λ4 λ5 lr bsz ds dd

Sprites 10 5 1 5 1 2e−3 100 256 32
MUG 5 9 1 0.5 2.5 15e−4 16 256 64
Letters 2.5 1 1 5 5 2e−3 64 256 32
Jesters 5 1 1 1 1 1e−3 16 256 64
TIMIT 5 1 1 0.5 1 1e−3 10 256 64
Physionet 2.5 7 1 0.1 2.5 1e−3 10 12 4
Air Quality 2.5 5 1 0.1 2.5 1e−3 10 12 4
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Algorithm 1 Static predictive sampling trick

Input: Batch of samples {xj
1:T }nj=1 ∼ pD

LiNCE ← 0
{sj}nj=1 ∼ q̃({sj}nj=1 | {x

j
1:T }nj=1)

for i = 1 to n do
for j = 1 to n do
Dij ← KL[q̃(si |xi

1:T ) ∥ q̃(sj |x
j
1:T )]

end for
χi ← argsort(Di)

end for
for i = 1 to n do
ω ← χi[: ⌊n3 ⌋], ρ← χi[⌊ 2n3 ⌋ :]
S+ ← {q̃(sω |xω

1:T )}, S− ← {q̃(sρ |xρ
1:T )}

/* Sample Positive Example */
d̃1:T ∼ p(d1:T ), s̃

+ ∼ S+

x+
1:T ∼ p(x+

1:T | s̃+, d̃1:T )
s+ ∼ q(s+ |x+

1:T )

/* Sample Negative Examples */
{s̃−}2nj=1 ∼ S−

{x−
1:T }2nj=1 ∼ p({x−

1:T }2nj=1 | {s̃−}2nj=1, {d1:T }2nj=1)

{s−}2nj=1 ∼ q({s−}2nj=1 | {x
−
1:T }2nj=1)

LiNCE ← LiNCE + log ϕ(s,s+)

ϕ(s,s+)+
∑2n

j=1 ϕ(s,s−,j)

end for
return LiNCE/n

B. More Experiments, Analyses and Information
B.1. Method Implementation and Pseudocode

In what follows, we will explain in detail the implementation of our sampling procedure. In addition, we add a pseudocode
in Alg. 1 which describes the process and shows how our framework can be implemented.

1. Producing static (s) and dynamic (d1:T ) distributions: Let x1:T ∼ pD. Using the model architecture, elaborated
in the previous section, we can compute the mean and log variance vectors that represent the s and d1:T posterior
distributions: sµ, slog(σ), dµ1:T , dlog(σ)1:T

2. Producing Positive and Negative Views: W.l.o.g we focus on how to produce positive and negative static views.
However, it is a similar process for the positive and negative dynamic views. To produce the positive view, we need a
vector s+ that represents a positive view of the static factor (potentially from the same class) and vectors d̃1:T that
represent arbitrary dynamics.

The vectors d̃1:T can be simply sampled from the prior distribution d̃1:T ∼ p(d1:T ). To produce s+, we compute the
pairwise KL divergence distances matrix D ∈ Rn×n for the batch as described in the main text in Eq 7. We then
sort the row Di: in ascending order, and we sample positive views from the first third of distributions denoted by S+,
whereas negative views are sampled from the last third denoted by S−. To increase the variability in the views, our
predictive sampling trick generates these examples from the posterior of the sampled prior. To achieve this, we sample
s̃+ ∼ S+. Then, the positive instance x+

1:T is defined via x+
1:T ∼ p(x+

1:T | s̃+, d̃1:T ). Finally, the positive static view is
obtained by sampling the posterior: s+ ∼ q(s+ |x+

1:T ).

A similar proccess is performed to obtain negative views. We first sample 2n examples from {s̃−}2nj=1 ∼ S− where
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Table 7. Disentanglement metrics on Sprites and MUG using only a reparametrization trick (repar. trick) vs. using our predictive sampling
trick (ours). Our results are better overall across all metrics.

Sprites MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Acc↑ IS↑ H(y|x)↓ H(y)↑
repar. trick 100%± 0% 8.865± 9.98e−4 0.015± 1.13e−4 2.197± 0 83.93%± 0.96 5.495± 0.048 0.092± 7.9e−3 1.775± 4.2e−3

Ours 100%± 0% 8.942 ± 3.3e−5 0.006 ± 4e−6 2.197 ± 0 85.71%± 0.9 5.548± 0.039 0.066 ± 4e−3 1.779 ± 6e−3

S− obtained from D. Next, the negative instances {x−
1:T }2nj=1 are defined via

{x−
1:T }

2n
j=1 ∼ p({x−

1:T }
2n
j=1 | {s̃−}2nj=1, {d1:T }2nj=1) .

Finally, the negative static views are obtained by sampling the posterior

{s−}2nj=1 ∼ q({s−}2nj=1 | {x−
1:T }

2n
j=1) .

The computational complexity of the DKL matrix is an important aspect of this stage. In practice, we never construct
this matrix. Instead, we exploit the parallel capabilities of PyTorch. Notice that this computation is parallel on the level
of the cell, as each matrix cell is independent of the others. Thus, PyTorch can utilize its full parallelization capabilities
on this task. In particular, since the computation per cell is constant in time (and memory), the entire computation
of DKL can be made in constant time, if every cell is calculated by a separate compute node. Therefore, the first for
loop in Alg. 1 utilizes the full parallel compute capabilities of PyTorch. Similarly, the second for loop in Alg. 1 is
re-phrased in a tensorial form such that the for loop is avoided completely.

3. Calculating the Contrastive Loss: We can compute the contrastive loss (LiNCE) given the positive s+ and the negatives
{s−}2nj=1 samples.

B.2. A Thirds Similarity Distributions Experiment

Throughout our studies, we observed that taking the negatives from the last third, obtained the best results as seen in the
ablation study in Sec. 5.7. One possible explanation is that the last third consists of fewer positive points, i.e., samples
we consider to be negative but are in fact positive. Since our negative sampling process is random, it might be that using
negative samples from the last third avoids positive samples more often than taking such samples from the middle third,
which yields better overall results in practice. To strengthen this hypothesis, we calculated the distribution of similarity
ϕ(u, vj) for each third. We used our trained model to get the latent space vectors and calculated their similarity scores.
We conduct the experiment both for the static and dynamic latent vectors. The results are very similar, thus we decided to
show here the dynamic vector similarity distribution. We show the similarity histogram of the various thirds in Fig. 4. The
histogram shows an intuitive ordering of the thirds in the sense that the first third yields the most similar samples, and the last
third yields the most dissimilar samples. Thus, we believe that the governing factor which made the last third to be better is
that wrong samples are probably sampled less often in comparison to the middle third. In addition, notice that the last third
does contain several examples with similarity ϕ(u, vj) higher than 0.5, and these samples may be hard negative examples.

B.3. The Predictive Sampling Trick vs a Reparametrization Trick

To further analyze the contribution of the predictive sampling trick, we re-trained two neural networks with the same
hyperparameters on Sprites and MUG without the predictive sampling trick, and instead, we used a simple reparametrization
trick. We report the results of the comparison between the two in Tab. 7. One can observe that the reparametrization trick
models’ results are inferior in comparison to the results of the predictive sampling trick results. For instance, while the
accuracy metric for Sprites is saturated, a reduction in the other metrics is noticeable, e.g. 8.942, using our method vs. 8.865
using the reparametrization trick on the IS metric. The difference is even more noticeable on the MUG dataset, where the
reparametrization trick suffers an almost two percent loss in accuracy. These results further motivate and reinforce our
choice and design of the predictive sampling trick.
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Figure 4. We compute the similarity scores ϕ(u, vj) of the current sample u with respect to samples positioned in the first, middle, and
last thirds. The scores are ordered sequentially, i.e., the first third attains the most similar samples, whereas the last third includes the most
dissimilar examples.
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Figure 5. We plot the t-SNE embedding of the dynamic features of the inputs and their positive samples as computed by C-DSVAE (top)
and our approach (bottom). In this setting, the blue and orange embeddings should be as close as possible.

B.4. Qualitative Evaluations

Here, we propose an additional qualitative evaluation of our contrastive estimation using the MUG dataset. Specifically,
we evaluated the positive and negative samples on two trained models, C-DSVAE and ours. We collect the dynamic latent
representations di1:T for every sample i in the test set, and we compute the mean value d = 1

T

∑T
j=1 dj , where the index

i is omitted for brevity. For each of those samples, we extract a subset of their positive d+ and negative d− samples. To
visualize these latent features, we project the original representation d and the new samples d+ and d− using t-SNE (Van der
Maaten & Hinton, 2008). We anticipate that the pair (d, d+) will be close in latent space as contrastive learning attracts
positive data points closer. In contrast, contrastive learning repels negative samples, and thus (d, d−) should be far from
each other. We present the results in 5 and 6. For the positive samples, our method shows an impressive similarity between
d and d+. In comparison, C-DSVAE presents a much bigger distance between the d and d+. On the negative samples,
our method shows good discrimination between d and d−, and in addition, our samples are much more concentrated. In
comparison, discriminating between the input and negative samples in C-DSVAE is more challenging. We obtained similar
results for the static setting, i.e., when we studied the t-SNE embeddings of s and its positive s+ and negative s− samples.

B.5. Additional Information on the TIMIT Speaker Verification Task

Here, we discuss more on the Audio experiment with TIMIT described in Sec. 5.4. First, the TIMIT test dataset contains
eight different sentences for each speaker with 24 unique speakers. In total there are 192 audios. For all those audios, we
extract their s and d1:T latent representations. Then, to prepare a single vector representation we calculate the identity
representation vector by the same procedure described in (Yingzhen & Mandt, 2018). Last, the EER is being calculated
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Figure 6. We plot the t-SNE embedding of the dynamic features of the inputs and their negative samples as computed by C-DSVAE (top)
and our approach (bottom). In this setting, the blue and orange embeddings should be as separate as possible.

separately for all the combinations of 192 vectors. In total, there are 18 336 pairs. We repeat this process independently
once for the s features and once for the d1:T features.

B.6. Standard Deviation Measures for Tab. 1

Here, we report the standard deviation measures related to Tab. 1 in the main text. Notice that the audio experiment is
deterministic due to the ERR metric definition, and thus it does not have standard deviation measures. The extended results
are provided in Tab. 8. These results indicate that not only our method achieves superior results in comparison to SOTA
approaches, but also, it is well within the statistical significance regime, given the standard deviation measures.

B.7. Data Generation

We qualitatively evaluate our model’s ability to generate static and dynamics features. Specifically, let x1:t ∼ pD denote
a sample from the data with its static and dynamic factors latent representations (s, d1:T ) given by s ∼ q(s |x1:T ) and
d1:T ∼ q(d1:T |x1:T ). We generate new static features by sampling from the static prior distribution p(s), namely, s̃ ∼ p(s)
and fixing the dynamics d1:T . Then, we concatenate (s̃, d1:T ), and we generate a new sample x̃1:T ∼ p(x̃1:T | s̃, d1:T ).
Finally, we perform a similar process in order to generate the dynamics, where we sample from the dynamic prior distribution
and the static features are fixed. The results of static and dynamic features’ generation for the Sprites and MUG datasets are
given in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. The left column in each figure contains the original samples and the right column
contains the generated samples. If the model disentangles the features well and has high generation performance, then, the
fixed features should be preserved perfectly and the generated features should be random (independent of the original class).

B.8. Swaps

In this section we perform another qualitative experiment. Specifically, given source and target samples, xsrc
1:T , x

tgt
1:T ∼ pD,

we swap the static and dynamic features between the source and the target. In practice, we feed the encoder with the samples

Table 8. We augment Tab. 1 for the Sprites and MUG datasets with standard deviation measures.

Sprites MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192 63.12% 4.332 0.183 1.721
DSVAE 90.73% 8.384 0.072 2.192 54.29% 3.608 0.374 1.657
R-WAE 98.98% 8.516 0.055 2.197 71.25% 5.149 0.131 1.771
S3VAE 99.49% 8.637 0.041 2.197 70.51% 5.136 0.135 1.760
SKD 100% 8.999 1.6e−7 2.197 77.45% 5.569 0.052 1.769
C-DSVAE 99.99% 8.871 0.014 2.197 81.16% 5.341 0.092 1.775

Ours 100% ± 0% 8.942± 3.3e−5 0.006± 4e−6 2.197 ± 0 85.71%± 0.9 5.548± 0.039 0.066± 4e−3 1.779 ± 6e−3
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Table 9. Downstream classification task on latent static and dynamic features using SVC.

Static features Dynamic features
Dataset Method Static L-Acc ↑ Dynamic L-Acc ↓ Gap ↑ Static L-Acc ↓ Dynamic L-Acc ↑ Gap ↑

MUG
random 1.92% 16.66% - 1.92% 16.66% -
C-DSVAE 98.75% ± 1% 76.25%± 2.9% 22.25% 26.25%± 3.8% 82.50%± 2.5% 56.25%
Ours 98.12%± 0.9% 68.75% ± 2.6% 29.37% 10.00% ± 3.4% 85.62% ± 2.4% 75.62%

Letters
random 1.65% 3.84% - 1.65% 3.84% -
C-DSVAE 95.47%± 0.5% 13.0%± 0.6% 82.47% 2.79% ± 0.5% 66.35%± 1% 63.56%
Ours 100% ± 0% 12.16% ± 0.6% 87.84% 3.06%± 0.3% 69.75% ± 1.4% 66.69%

Table 10. Downstream classification task on latent static and dynamic features using Random Forest Classifier.

Static features Dynamic features
Dataset Method Static L-Acc ↑ Dynamic L-Acc ↓ Gap ↑ Static L-Acc ↓ Dynamic L-Acc ↑ Gap ↑

MUG
random 1.92% 16.66% - 1.92% 16.66% -
C-DSVAE 98.75% ± 0.7% 72.75%± 2.8% 26% 64%± 4.1% 83.18%± 1.7% 19.18%
Ours 98.06%± 1.1% 68.50% ± 2.7% 29.56% 38.93% ± 4.6% 86.75% ± 2.5% 47.82%

Letters
random 1.65% 3.84% - 1.65% 3.84% -
C-DSVAE 100%± 0% 5.6%± 0.6% 94.4% 3.66%± 0.3% 75.44%± 1% 71.78%
Ours 100%± 0% 5.6%± 0.5% 94.4% 2.92% ± 0.3% 77.63% ± 1% 74.71%

to extract their static and dynamic latent representation, (ssrc, dsrc
1:T ) s.t ssrc ∼ q(ssrc |xsrc

1:T ) and dsrc
1:T ∼ q(dsrc

1:T |xsrc
1:T ) for the

source and stgt ∼ q(stgt |x1:T )
tgt and dtgt

1:T ∼ q(dtgt
1:T |x

tgt
1:T ) for the target. Then, we generate swapped samples by feeding

the decoder, x̃src
1:T ∼ p(x̃src

1:T | s̃tgt, dsrc
1:T ) and x̃tgt

1:T ∼ p(x̃tgt
1:T | s̃src, dtgt

1:T ). If the representation is well disentangled, x̃src
1:T

should preserve its original dynamics but have the target’s static features and vice versa for x̃tgt
1:T . Fig. 11 and Fig. 12 show

four separate examples of Sprites and MUG where the length of the MUG sequences are shorten to T = 10 for clarity. The
first row of each pair shows the original samples xsrc

1:T , x
tgt
1:T ∼ pD. The row below shows the swapping results. Namely,

rows 1, 3, 5, 7 represent the original samples and rows 2, 4, 6, 8 represent swapped samples.

B.9. Latent Classification Experiments with Different Classifiers and Standard Deviation

Here, we elaborate more on the experiment we reported in Sec. 5.5. We extracted the static s and dynamic d1:T features
using a trained model and trained four different classifiers. All trained classifiers are Support Vector Machines. We used the
default Support Vector Classifier (SVC) of the sklearn package without changing any hyperparameter. To strengthen the
statistical significance of Tab. 3 from the main text, we conduct the same experiment with different classifiers and report
their results in Tab. 9 (SVC), Tab. 10 (Random Forest Classifier), and Tab. 11 (KNN). These tables show that our results are
robust to the choice of the classifier. We repeated the experiments per classifier for 10 times with different seeds for data
splitting and report their means and standard deviations. We used the default sklearn Random Forest Classifier and KNN.
We used the sklearn default hyperparameters and conducted the same experiment procedure exactly. In the Jesters dataset,
we do the exact same process just without the static features and their classifiers since the subjects in this data are not labeled.
In the Letters dataset, there is one difference. For each di , i = 1, ..., T in d1:T we try to predict its corresponding letter
label in the sequence instead of trying to predict the whole word. Briefly, our model maintains its superior performance in
comparison to C-DSVAE (Bai et al., 2021) with respect to the gap metric among all classifiers.

B.10. Robustness with Respect to the Seed Choice

In our work, we based our evaluation section with respect to existing state-of-the-art models and their evaluation protocol
and benchmark datasets. Following these approaches, the sensitivity to hyperparameters and randomness is typically not
considered. Nevertheless, we re-trained our model on five different seeds in total to test its robustness with respect to the
particular choice of seed. We report the results in Tab. 12. These results indicate that our method is statistically significant
with respect to previous SOTA approaches.
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Table 11. Downstream classification task on latent static and dynamic features using KNN.

Static features Dynamic features
Dataset Method Static L-Acc ↑ Dynamic L-Acc ↓ Gap ↑ Static L-Acc ↓ Dynamic L-Acc ↑ Gap ↑

MUG
random 1.92% 16.66% - 1.92% 16.66% -
C-DSVAE 98.31%± 1.1% 50.31%± 3.6% 48% 26.18%± 3.4% 83.25% ± 2.1% 57.07%
Ours 99.31% ± 0.9% 49.25% ± 4.5% 50.06% 19.31% ± 2.8% 82.50%± 1.5% 63.19%

Letters
random 1.65% 3.84% - 1.65% 3.84% -
C-DSVAE 100%± 0% 5.8%± 0.5% 94.2% 3.41% ± 0.3% 76.61%± 0.9% 73.2%
Ours 100%± 0% 5.8%± 0.6% 94.2% 3.54%± 0.3% 78.33% ± 0.8% 74.92%

Table 12. We augment Tab. 1 for the MUG dataset with the mean and standard deviation measures using of five models trained with
different seed values.

Sprites MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192 63.12% 4.332 0.183 1.721
DSVAE 90.73% 8.384 0.072 2.192 54.29% 3.608 0.374 1.657
R-WAE 98.98% 8.516 0.055 2.197 71.25% 5.149 0.131 1.771
S3VAE 99.49% 8.637 0.041 2.197 70.51% 5.136 0.135 1.760
SKD 100% 8.999 1.6e−7 2.197 77.45% 5.569 0.052 1.769
C-DSVAE 99.99% 8.871 0.014 2.197 81.16% 5.341 0.092 1.775

Ours 100% ± 0% 8.942± 3.3e−5 0.006± 4e−6 2.197 ± 0 85.06% ± 1.06 5.517± 0.034 0.073± 4e−3 1.782 ± 3e−3

Figure 7. Content generation results in Sprites dataset. See the text for additional details.
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Figure 8. Dynamics generation results in Sprites dataset. See the text for additional details.

Figure 9. Content generation results in MUG dataset. See the text for additional details.
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Figure 10. Dynamics generation results in MUG dataset. See the text for additional details.

Figure 11. Swapping results in Sprites dataset. See the text for additional details.
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Figure 12. Swapping results in MUG dataset. See the text for additional details.
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