
An Operator Theoretic Approach for Analyzing Sequence Neural Networks
Supplementary Material

Ilan Naiman, Omri Azencot
Department of Computer Science,

Ben-Gurion University of the Negev, Beer Sheva, Israel
naimani@post.bgu.ac.il, azencot@cs.bgu.ac.il

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Unigram and bigram highlighting in sentiment analysis
Several examples of reviews in which the positive and negative unigrams are highlighted by the projection magnitude of the
hidden states are shown in Fig. 1. In particular, we note the first negative review, where the network decreases the projection
magnitude when it identifies a positive word (excellent), and the magnitude increases significantly when the word bad
appears. To further assess the eigenvectors role in identifying positive and negative unigrams in the reviews, we perform the
following statistical evaluation. We employ a Bag Of Words (BOW) algorithm on the vocabulary to classify the sentiment on the
word level. Using the BOW classification, we extract the positive and negative words from each review, and we compute how
many of these words attain high projection magnitude values. Specifically, given a batch H , we compute the following averages

ap(H) =
1

|Tp|
∑
t∈Tp

⌊s(1, ht)⌉ , an(H) =
1

|Tn|
∑
t∈Tn

⌊s(3, ht)⌉ , (1)

where s(j, ht) = |ĥt(j)| ∈ [0, 1] is the projection magnitude of the state ht onto the eigenvector uj , Tp and Tn are the indices of
positive and negative elements, respectively, and the operator ⌊·⌉ rounds a number to the closest integer. Thus, ap(H) and an(H)
hold the average of positive and negative words whose projection magnitude is a at least .5 or higher. Consequently, we can
view Eq. (1) as the percentage of identified positive and negative unigrams. We show in Fig. 5 histograms of ap(H) and an(H)
over the entire test set. We find that on average, 62.3% and 74.0% of the positive and negative words, respectively, are identified
correctly by the eigenvectors. These statistics support and reinforce our observation about the role of the eigenvectors in counting
positive/negative words.

B The case of general n-grams for n > 2
In addition to unigram and bigram highlighting, we also consider KANN in the general case of n-grams where n > 2. We note
that n-grams with large n are less common in sentiment analysis, both from a semantic perspective (what would a 5-gram mean?)
and also from a statistics viewpoint (e.g., even 2-grams are scarce in the IMDB dataset). Nevertheless, we would like to show in
the following that KANN indeed extends to the general case, and we test our method on 3-gram phrases. To this end, we created a
batch of 3-grams by adding amplifiers to 2-grams, e.g., “not bad” was changed to “not extremely bad” or “not very bad” and etc.,
and we repeated our analysis. Specifically, we extract a batch H ∈ Rk×n×m and obtain an operator C. Then, we project the
batch on the eigenvectors as described in Eq.(10) for each j eigenvector of C while we sum over time and average over batch:

ξj(H) =
1

k

∑
h∈H

∑
t∈Th

s(j, ht) (2)

where each h ∈ H is a sequence of hidden states corresponds to an example in the batch, k is the size of the batch and Th are the
indices of the sequence. We sort ξ(H) from high to low values to better visualize the importance of the Koopman eigenvectors
and their ordering. We plot the resulting graph in Fig. 2 where a hierarchical behavior is shown, and each group of eigenvectors
have a different role. The first group with labels [3, 2, 4, 5] with the highest projection values captures 1-grams as discussed in
the main text. The second group with labels [6, 7] encodes 2-grams, and the third group with labels [10, 9] encodes 3-grams
as we show in Fig. 3. Specifically, using the same method we described in the main text, we obtain highlighting of 3-gram
components in the review when projected onto eigenvector 10. Importantly, in our analysis on 3-grams we did not re-train the
network. Rather, we simply created a batch with 3-gram components and analyzed the results obtained with KANN.

C Shuffled reviews
We will consider the following two reviews: “not bad and very good” and “very bad and not good”. These reviews serve as a great
example to understand the behavior of the network as they contain the same words in a different order, and the overall meaning
is opposite. Considered from a linear dynamical systems viewpoint, these reviews seem to pose a challenge: given that the tokens
are the same but in a different order, how will a linear system be able to distinguish between them? Indeed, assuming a linear
system in the space of tokens would be problematic in this case. However, we would like to emphasize that our main claim in the
paper is that the dynamics in the latent space are sufficiently linear to allow for Koopman analysis. As the network is recurrent
and nonlinear, and the tokens are processed one-by-one, the above reviews can be distinguished in practice while not breaking
the linearity in the latent space. Specifically, each of these reviews is embedded completely differently. The first example starts
with the word “not”, whereas the second example starts with the word “very”. In practice, the network embeds these latent
states in completely different locations of the latent space. Moreover, the embedding of the other states are related to the initial
locations. Thus, in practice, the network has two completely different trajectories for the example reviews in discussion. From
a (linear) dynamical systems perspective, we have two trajectories of different initial conditions. Such cases can be typically
differentiated and identified using linear dynamical systems.

To show it numerically, we generated these two reviews (five words each), and we repeated our analysis. Specifically,
we projected their latent trajectories (as obtained from the network) onto the first two dominant PCA modes (as was done
in (Maheswaranathan et al. 2019)), and we report the obtained paths in Tab. 1. Keeping in mind that the network is mostly
one-dimensional in a PCA representation, the above paths clearly show that the reviews are correctly classified. Namely, the first

review starts in the negative part of the x-axis (−0.716) and finishes in the positive part of the x-axis (0.713). In comparison, the
second review starts in the positive part of the x-axis (1.478) and finishes in the negative part of the x-axis (−0.572). Computing
the paths using our KANN representation via the matrix C, we obtain the paths reported in Tab. 1. While the values are different
(as our linear approximation exhibits some error), the initial positions and trend are the same for the nonlinear representation and
our Koopman linear representation. In particular, the trajectories end on the same side of the x-axis for each review, exactly as
we have in the nonlinear network.

“not bad and very good” “very bad and not good”

Time Network KANN Network KANN

t = 1 (−0.716, 0.547) (−0.284, 0.649) (1.478, 0.355) (1.094, 0.522)
t = 2 (−1.080, 0.280) (−0.589, 0.612) (0.313, 0.078) (0.128, 0.619)
t = 3 (−0.440), −0.093) (0.003, 0.479) (0.392, −0.282) (0.335, 0.503)
t = 4 (0.807, −0.319) (0.708, 0.419) (−0.895, −0.311) (−0.530, 0.571)
t = 5 (0.713, 0.036) (0.598, 0.474) (−0.572, −0.291) (−0.237, 0.542)

Table 1: The nonlinear network as well as our linear representation are able to differentiate between the reviews “not bad and
very good” and “very bad and not good”, and to correctly classify them. Specifically, we show the trajectories of the hidden
states as obtained from the network and our method when projected to the first dominant PCA modes. The results above show
similar initial conditions and trend, i.e., both start and end on the same side of the x-axis. We conclude that the network learns a
representation which is sufficiently linear in the latent space, allowing to methods such as ours to expose its dynamics.

D Projecting normal beat signals onto PCA components
In Sec. 4.2 in the main text, we discover that the dominant Koopman eigenvectors are capable of identifying the salient features in
the beat signals (marked by dashed black lines in Fig. 4). To compare our results with PCA and KernelPCA (using rbf kernel),
we now repeat the same experiment, but instead of projecting onto Koopman modes, we project the hidden states H to the first
four PCs and first four eigenvectors of the centered kernel matrix respectively. We provide both qualitative and quantitative
comparison with both methods. Fig. 4 shows the resulting graphs, clearly demonstrating that PCA and KernelPCA fail to encode
the dynamics. In Tab. 2 we provide a quantitative comparison of our method to PCA and KernelPCA. Specifically, for every
method, we compute the mode with the minimal distance to the salient features located at times t = 3, 35 ≤ t ≤ 75, t = 103
and t = 133. The results clearly show that KANN attains the lowest error for each of the salient features.

Method t = 3 35 ≤ t ≤ 75 t = 103 t = 133

PCA 1.5817 1.2197 0.3356 1.1685
KernelPCA 0.0762 1.1045 0.4095 0.7217
KANN 0.0317 0.5107 0.1724 0.0871

Table 2: For every salient feature at times t = 3, 35 ≤ t ≤ 75, t = 103 and t = 133, we compute the distance between the
signal and its reconstruction using the principal modes of PCA, KernelPCA and KANN. Our approach exhibits the minimal
error in comparison to PCA and KernelPCA.

Positive unigram reviews:

Negative unigram reviews:

Bigram reviews:

Figure 1: Several examples of highlighted unigrams and bigrams.

3 2 4 5 6 7 10 9
Eigenvector index

10−2

Pr
oj

ec
tio

n
va

lu
e

1-grams
2-grams
3-grams

Figure 2: Projecting the batches of reviews onto the Koopman eigenvectors as specified in Eq. (2) reveals a hierarchical
ordering where subspaces of eigenvectors attain different roles. In particular, the first group of eigenvectors colored blue and
with indices[3, 2, 4, 5] highlights 1-grams. Similarly, the second group of eigenvectors with the orange color and indices [6, 7]
identifies 2-grams. Finally, the last group in green with indices [10, 9] highlights 3-grams. We note that a similar structure was
identified across different batches.

Figure 3: Projecting the hidden states to eigenvector 10 highlights 3-gram components, similarly to the highlighting of 1-grams
and 2-grams in Fig. 1.

Figure 4: We show the first four principal modes of KANN (solid lines), PCA (dashed lines), and KernelPCA (dotted lines).
The above graphs show that our method is better at matching the salient features of beat signals which are marked by black
dashed lines in comparison to PCA and KernelPCA. We conclude that the network mainly focuses on reconstructing these
salient features, allowing the user to easliy distinguish between normal and anomalous beats during post-prcoessing.

0.0 0.2 0.4 0.6 0.8 1.0
average of identified unigrams

0

10

20

30

40

50

#b
at

ch
es

positive
negative

Figure 5: The above histograms show the average percentage of identified positive (blue) and negative (orange) unigrams per
batch. It follows that negative words are better identified by the network (74.0%) in comparison to positive words (62.3%).

E Different basis and network architectures
Choice of basis. We will now demonstrate the robustness of our approach to the choice of basis. The first step to computing the
matrix C involves the projection of the given states onto a basis. In our work, we mostly experimented with the truncated SVD
modes obtained by decomposing the hidden states tensor. In what follows, we additionally show that the principal component
analysis (PCA), and Fourier transform (FFT) bases lead to quantitatively similar results on the sentiment analysis task. We note
that while the bases are linear in terms of projection, SVD and PCA are data-driven, whereas FFT is data-agnostic, i.e., the basis
elements are independent of the data. First, we compute the relative error as in Sec. 4.4, and we obtain 0.0347, 0.0347, 0.973 for
SVD, PCA, and FFT, respectively. The somewhat poor result of FFT is expected, as it is data-agnostic. Second, we compare
the dominant eigenvalues of the different C matrices computed using the bases. It follows that across all bases, the dominant
eigenvalues correspond to one another. In particular, the average error between corresponding eigenvalues is 0.003 for PCA, and
0.02 for FFT, when measured from the eigenvalues of SVD. We additionally plot the dominant eigenvalues in Fig. 7 where the
x-axis is the real part, and the y-axis is the imaginary part. Finally, we also show how the dominant eigenvectors have the same
semantic role in highlighting the positive words in the same review. Indeed, we show in Fig. 6 that the positive words obtain
large projection magnitudes in all bases. See the words e.g., amazing, special, good. Overall, the results show robustness
to linear bases.

Results extend across architectures. In addition to robustness to the basis, we also verify that our results qualitatively extend
across different architectures. Specifically, we trained a vanilla recurrent neural network (RNN) (Elman 1990), a long short term
memory model (LSTM) (Hochreiter and Schmidhuber 1997), and a gated recurrent unit (GRU) network on the sentiment analysis
problem. Then, we extract a single batch from the test set, and evaluate our KANN approach on the trained models. We find that
our analysis yields similar results in all cases. In particular, the dominant eigenvalues of each of the models attain related values
as can be seen in Fig. 7 (right). Moreover, we find that the dominant eigenvectors share the same role of highlighting positive and
negative unigrams. To verify this, we computed the histograms of identified positive and negative words as in Fig. 5. We observe
that on average 62%, 76%, and 62% positive words are discovered by the projection magnitude of the RNN, LSTM, and GRU
models. Similarly, the negative unigrams are highlighted in an average of 55%, 83%, and 74% for RNN, LSTM, and GRU. Indeed,
there is a large variation in the statistics of the models, where LSTM obtains the best averages, followed by GRU, and RNN is last.
Nevertheless, in all cases, the average identification of unigrams is above 50%, and given that BOW is noisy by itself, we believe
these statistics are qualitatively similar. In addition, we plot in Fig. 8 a few examples of highlighted reviews obtained with the
models.

F Results on the copy task
The copy task was designed to test the memory retaining capabilities of recurrent units (Hochreiter and Schmidhuber 1997). In
this task, the network is expected to memorize the first few characters in the input array and copy them to the end of the output
vector which is otherwise filled with blanks. For instance, the input-output structure reads 928---:-- 7→φ ------928,
if the model is required to remember three digits across three blanks. Thus, the challenge increases with more digits to remember
and when the amount of blanks is higher. We trained a dtriv architecture (Casado 2019) on the copy task with three characters
to remember and 30 blanks for 500 iterations. The dtriv model is similar to a vanilla RNN with the exception that its
hidden-to-hidden transformation is orthogonal. The network converges to an accuracy of 100% on the training and test data as it
is a relatively easy setting. The following analysis is based on a test batch of size 32, yielding a states tensor H ∈ R32×36×48

where the middle dimension is the sequence length, and the last dimension is the hidden state size.

The latent structure of the copy task is measure-preserving. Our first analysis result deals with the geometric structure of
the learnt dynamics. Before discussing our results, we make the following three observations. First, the copy problem with its
unknown dynamics φ which maps inputs to outputs, is isometric. Indeed, for many choices of norms, e.g., L2, it follows that
d(x1, x2) = d(y1 = φ(x1), y2 = φ(x2)) where x1, x2 are two input vectors, and y1, y2 are two output vectors. Thus, φ belongs
to the class of measure-preserving dynamical systems. Second, while dtriv uses orthogonal hidden-to-hidden matrices, the
overall network transformation is not necessarily isometric due to the nonlinear activation layers. Indeed, the analysis in (Arjovsky,
Shah, and Bengio 2016) which also applies to dtriv only establishes an upper bound on the gradient norms, and there is
no lower bound. In practice, since dtriv uses modReLU (Arjovsky, Shah, and Bengio 2016), it may cause a non-isometric
transformation to the latent space. Third, Koopman theory establishes a connection between the algebraic properties of the linear
operator to the geometric structure of the dynamics as we show next. The following result is not novel (Eisner et al. 2015), but
we prove it below for completeness.
Proposition 1 Let φ be an invertible measure preserving dynamical system on a compact, inner-product domain M. Then its
associated Koopman operator is unitary.

Proof. Let φ : M → M be a map on the compact, inner-product space M. We denote by µ the continuous measure on M,
and its induced metric ∥z∥. The map φ is measure preserving, i.e., µ(φ−1A) = µ(A) for every measurable set A ⊂ M. Let Kφ

be the Koopman operator of φ acting on the function space of square integrable function L2. Given the indicator function 1A for
the set A, we have that

Kφ1A(z) = 1A(φ ◦ z) = 1φ−1A(z) ,

and thus ∫
M

Kφ1A dµ = µ(φ−1A) = µ(A) =

∫
M

1A dµ .

Moreover, positive functions converge to a representation using simple indicator functions. Consequently, we have that∫
M Kφf dµ =

∫
M f dµ for general f ∈ L2 since it can be written as the difference of the integrable negative and posi-

tive components of f .
The Koopman operator is linear and it is pointwise multiplicative, i.e., Kφ(αf + βg) = αKφ(f) + βKφ(g) and Kφ(f g) =

Kφ(f)Kφ(g), where α, β ∈ R, and f, g ∈ L2. Due to these observations, it follows that Kφ preserves the inner product of
functions, namely, for every f, g ∈ L2

⟨f, g⟩ =
∫
M

f g dµ =

∫
M

Kφ(f g) dµ = ⟨Kφ(f), Kφ(g)⟩ .

Thus, the Koopman operator in this case is an isometry, since

d(f, g) = ∥f − g∥ = ⟨f − g, f − g⟩ 1
2 = ⟨Kφ(f − g), Kφ(f − g)⟩ 1

2 .

Finally, if φ is invertible then K∗
φKφ = KφK∗

φ where K∗
φ is the adjoint operator, and thus Kφ is unitary.

Given H as specified above and its corresponding C, we find that C is approximately orthogonal, i.e., CTC ≈ id. Specifically,
the relative error |CTC − id|2/|C|2 = 0.0625. Our findings align with prior work (Rustamov et al. 2013) which shows that
approximate Koopman operators are approximately orthogonal for measure-preserving maps. Therefore, although dtriv is not
guaranteed to learn a measure-preserving latent map, it does so in practice as our method reveals.

0

2

35

ĥ0

ĥt

ĥT

Eigenvectors span multiple digits in the copy task. Our second analysis result
on the copy problem focuses on the eigendecomposition of C. We find that most of
the eigenvalues, 44 out of 47, are approximately unit length, i.e., |λj − 1| < 5e−2,
which also reinforces the above findings. Based on Eq. (9) it follows that the
eigenvectors of those eigenvalues have long memory horizons, e.g., τ = 418 for
ϵ = 1e−1. This is well beyond the required memory horizon for this task which
is 30 as the number of blanks. Additionally, we find that all eigenvectors have the
capacity to represent several characters, depending on the root of unity they are
multiplied with. Namely, computing the output of the state h̃ = Re(zvj) for several
z values, yields various digits. For instance, the inset shows a specific eigenvector
and its associated digits with their respective span of the unit ball. We also plot in
shaded dots the coefficients of a particular input over time. Evidently, the shown
eigenvector is responsible to output the blank part of the output since the coefficients
are located in the zero regime. Qualitatively similar results were obtained for the
other eigenvectors as we show in Fig. 9 the sets of digits for select eigenvectors.
For instance, v6 spans the digits {0, 5, 7}, depending on the root of unity zi we multiply with v6. Thus, the network essentially
splits the latent space onto digit regions. Then, given an input such as 928---:--, the network generates its latent trajectory by
carefully scaling the eigenvectors to point to the required output for every time sample.

Quantitative results on the copy task. We briefly recall that RENN uses the hidden state tensor H to generate a set of fixed
points, i.e., points h∗ for which the dynamical system ht = F (ht−1, xt) is stationary h∗ ≈ F (h∗, 0) (Sussillo and Barak
2013). Then, they derive their analysis using the input and recurrent Jacobians of F , J inp and J rec, evaluated at a single
point (h∗, x∗ ≡ 0). We show in Fig. 10 the resulting Jacobian matrices using RENN where J rec ≈ id matrix (left). This is
actually the expected result—as the blanks are mapped to zeros in this task, using x∗ ≡ 0 means we look for fixed points h∗

related to a blank input. However, the output for a blank input should be blank as well, and thus the hidden states converge to a
section of the manifold which is indifferent to the inputs. Indeed, in (Sussillo and Barak 2013; Maheswaranathan and Sussillo
2020; Maheswaranathan et al. 2020), the authors discuss approaches to select input dependent initial points x∗, however, it
remains unclear how to avoid the above issue since any chosen point is related to a particular potential input. For reference and
comparison, we show in Fig. 10 (middle) the algebraic structure of our C matrix.

To assess the information encoded in J rec and J inp vs. C, we perform the following experiment. Let {ht} denote the
nonlinear path of hidden states obtained from the copy task network. Given a certain threshold l = 1, ..., T , we split the path
to two segments {ht}lt=1 and {BCkh̃l}T−l

k=1. That is, the first segment is simply the original states, and the second segment
includes linear predictions with Ck while always using hl. We denote by HKANN

l the union of the paths, i.e.,

HKANN
l = {h1, ..., hl, B Ch̃l, .., B CT−lh̃l} . (3)

For every admissible l, we generate HKANN
l , and we compute the accuracy obtained by the network using the path HKANN

l . Fig. 10
(right) shows in blue the accuracy for the nonlinear path which is simply 100%. We show in orange the accuracy obtained for

several l/T values. The accuracy results of KANN are extremely good, even when the percentage is high, i.e., most of the path
does not use the states provided by the network, but rather, their linear prediction. Further, we emphasize that the orange point
marks the percentage for three hidden states. That is, our method gets more than 80% accuracy exactly when all the non-blank
input digits are implicitly available in the states. Therefore, our results highlight that C truly mimics the nonlinear dynamics as it
is the minimal set of necessary inputs for a meaningful prediction.

In comparison, RENN can be used in a similar fashion to generate HRENN
l using the following formula

hRENNt+1 := h∗ + J rec(h̄t − h∗) + J inpxt (4)

≈ h̄t + J inpxt , (5)

where h̄t can be the original ht or hRENNt depending on l, and the bottom formula is relevant when J rec ≈ id matrix. The green
curve in Fig. 10 shows the accuracy results of RENN. Due to the trivial nature of J rec, RENN achieves zero accuracy in most
cases, and it significantly improves when the last three states become available (marked by the green point). Thus, RENN requires
almost the entire sequence of ground-truth hidden states to produce good accuracy measures in this scenario.

G Training Information
In Tab. 3 we add details regarding the models training process across each architecture and task. In the tasks column, SA, ECGC,
and CT are acronyms for Sentiment Analysis, ECG Classification, and Copy Task, respectively. In addition, we used weight
decay regularization in both ECG classification and Sentiment Analysis tasks.

Table 3: The following hyperparameters per task and model were used during training.

Task Architecture #epochs #units Optimizer LR LR Scheduler Clip

SA RNN 7 128 Adam 5e−3 ExpLR, γ = 0.6 15
SA GRU 5 256 Adam 5e−3 ExpLR, γ = 0.5 15
SA LSTM 5 256 Adam 1e−3 ExpLR, γ = 0.3 5

ECGC GRU 150 64 Adam 1e−3 – −1
ECGC LSTM 150 64 Adam 1e−3 – −1

CT dtriv 500 48 RMSprop 1e−3 – −1
CT RNN 10k 64 RMSprop 5e−3 ExpLR, γ = 0.85 5
CT GRU 285 48 RMSprop 1e−2 – −1
CT LSTM 6.5k 48 RMSprop 5e−3 – 10

H KANN reproduces the latent dynamics
We performed a quantitative study of the ability of C to truly capture the latent dynamics. We show that indeed, KANN is able to
reproduce the nonlinear dynamics of the network in Eq.(1) from the main text, to a high degree of precision, and thus we achieve
the empirical justification to replace F with C. To this end, we consider the following two metrics:
1. Relative error of hidden states: let {hs,t} be a collection of states over samples s = 1, ..., S and across time t = 1, ..., T . We
generate the predicted collection {hKANNs,t } using Eq.(6), and we compute

erel({hKANNs,t }, {hs,t}) =
1

T · S
∑
s,t

|hKANNs,t − hs,t|22 / |hs,t|22 .

2. Accuracy error: let G be the neural network component that takes a state and produces the output of the model, i.e.,
G(ht) = ỹt. We denote by c̃t the category predicted by ỹt, for instance c̃t = argmax(ỹt). We compare the difference between
c̃t and c̃KANNt , obtained from G(hKANNt) = ỹKANNt .

We show in Fig.4 of the main text, the results of our quantitative study. For the sentiment analysis problem (Fig.4, left), we
obtain > 99% correspondence with the classification of the network over all the test set, as is shown for the True Positive (TP)
and True Negative (TN) columns vs. the False Positive (FP) and False Negative (FN) columns. In the ECG classification task
(Fig.4, right), we reconstruct 145 signals of the normal test set and compute their loss. There is a noticeable yet small shift in the
loss histogram between the network reconstruction (blue) in comparison to our reconstruction (orange). However, the threshold
for this problem set at 26 during training (black dashed line) yields > 97% agreement in classification. In particular, the false
classification of normal signals (around loss 90) appear both in the network output and in ours. Finally, we also computed the
relative error of the hidden states for each of the tasks, and we show the results in Tab. 4. Overall, the results demonstrate that
KANN faithfully represents the latent dynamics.

Table 4: Relative error of hidden states

Task Copy task Sentiment analysis ECG classification

#batch 32 64 145
erel 0.021 0.095 0.0056

References
Arjovsky, M.; Shah, A.; and Bengio, Y. 2016. Unitary Evolution Recurrent Neural Networks. In International Conference on
Machine Learning, volume 48, 1120–1128.
Casado, M. L. 2019. Trivializations for Gradient-Based Optimization on Manifolds. In Advances in Neural Information
Processing Systems, 9154–9164.
Eisner, T.; Farkas, B.; Haase, M.; and Nagel, R. 2015. Operator theoretic aspects of ergodic theory, volume 272. Springer.
Elman, J. L. 1990. Finding structure in time. Cognitive science, 14(2): 179–211.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9(8): 1735–1780.
Maheswaranathan, N.; and Sussillo, D. 2020. How recurrent networks implement contextual processing in sentiment analysis.
arXiv preprint arXiv:2004.08013.
Maheswaranathan, N.; Sussillo, D.; Metz, L.; Sun, R.; and Sohl-Dickstein, J. 2020. Reverse engineering learned optimizers
reveals known and novel mechanisms. arXiv preprint arXiv:2011.02159.
Maheswaranathan, N.; Williams, A.; Golub, M.; Ganguli, S.; and Sussillo, D. 2019. Reverse engineering recurrent networks for
sentiment classification reveals line attractor dynamics. In Advances in Neural Information Processing Systems, 15696–15705.
Rustamov, R. M.; Ovsjanikov, M.; Azencot, O.; Ben-Chen, M.; Chazal, F.; and Guibas, L. 2013. Map-based exploration of
intrinsic shape differences and variability. ACM Transactions on Graphics (TOG), 32(4): 1–12.
Sussillo, D.; and Barak, O. 2013. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural
networks. Neural computation, 25(3): 626–649.

Using SVD:

Using PCA:

Using FFT:

Figure 6: Computing C using SVD, PCA, and FFT yield eigenvectors with the same semantic role. Indeed, projections using
different bases highlight various positive words in the same review.

Figure 7: We show the dominant eigenvalues of various C matrices in the complex plane (Re, Im). Most of the eigenvalues
correspond when different bases such as SVD, PCA, FFT are used (left). Similarly, using recurrent components such as RNN,
LSTM, GRU leads to related spectra (right).

RNN model:

LSTM model:

Figure 8: Examples of highlighted unigrams obtained from the trained RNN and LSTM models.

u2 u4 u6 u8

Figure 9: Every eigenvector in the copy task span multiple characters in the alphabet, allowing it contribute to the propagation of
the initial digits over the sequence.

J rec J inp C

Figure 10: Computing RENN components for the copy task leads to an almost identity recurrent Jacobian, |J rec − id| = 0.11
relative error. In comparison, our matrix C is approximately orthogonal and it exhibits a diagonally-dominant structure. Our
KANN approach attains good accuracy results when used to predict the states path. See the text.

