
Forecasting Sequential Data Using Consistent Koopman Autoencoders
— Supplementary Materials —

Omri Azencot * 1 N. Benjamin Erichson * 2 Vanessa Lin 2 Michael W. Mahoney 2

1. Network architecture
In our evaluation, we employ an autoencoding architecture
where the encoder and decoder are shallow and contain
only three layers each. Using a simple design allows us to
focus our comparison on the differences between the DAE
model (Lusch et al., 2018) and ours. Specifically, we list
the network structure in Tab. 1 including the specific sizes
we used as well as the different activation functions. We
recall that m represents the spatial dimension of the input
signals, whereas κ is the bottleneck of our approximated
Koopman operators. Thus, p = 32 ·α is the main parameter
with which we control the width and expressiveness of the
autoencoder. We facilitate fully connected layers as some of
our datasets are represented on unstructured grids. Finally,
we note that the only difference between our net architecture
and the DAE model is the additional backward linear layer.

Type Layer Weight size Bias size Activation

Encoder FC m× p p tanh
Encoder FC p× p p tanh
Encoder FC p× κ κ linear

Forward FC κ× κ 0 linear
Backward FC κ× κ 0 linear

Decoder FC κ× p p tanh
Decoder FC p× p p tanh
Decoder FC p×m m linear

Table 1. Our network architecture, where p = 16 · α with α con-
trolling the width per encoder and decoder layer.

2. Computational requirements
The models used in this work are relatively shallow. The
amount of parameters per model can be computed as follows
2(m+32+κ)·32α+(4·32α+κ+m)+2·κ2, corresponding

*Equal contribution 1Department of Mathematics at UC
Los Angeles, CA, USA. 2ICSI and Department of Statistics
at UC Berkeley, CA, USA.. Correspondence to: Omri Azen-
cot <azencot@math.ucla.edu>, N. Benjamin Erichson <erich-
son@berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

to the number of weights, biases and Koopman operators,
respectively. Notice that DAE is different than our model
by having κ2 less parameters.

We recorded the average training time per epoch, and we
show the results for DAE and our models in Fig. 1 for many
of our test cases. Specifically, the figure shows from left
to right the run times for cylinder flow, noisy cylinder flow,
sphere flow, linear pendulum, noisy linear pendulum, non-
linear pendulum, noisy nonlinear pendulum, SST and noisy
SST. The behavior of our model is consistent in comparison
to DAE for the different tests. On average, if DAE takes x
milliseconds per epoch, than our model needs ≈ 1.8x time.

This difference in time is due to the additional penalty terms,
and it can be asymptotically bounded by

O(Ebwd) +O(Econ) = O(λsnm) +O(κ4) .

We note that the asymptotics for the forward prediction
are equal to the backward component, i.e., O(Efwd) =
O(λsnm). The consistency term Econ is composed of a
sum of sequence of cubes (matrix products) which can be
bounded by κ4, assuming matrix multiplication is O(κ3)
and thus it is a non tight bound. Moreover, while the quartic
bound is extremely high, we note that a cheaper version
of the constraint can be used in practice, i.e., ||CD − I||2F .
Also, since our models are loaded to the GPU where matrix
multiplication computations are usually done in parallel, the
practical bound may be much lower. Finally, the inference
time is insignificant (≈ 1 ms) and it is the same for DAE and
ours and thus we do not provide an elaborated comparison.

3. Backward prediction of dynamical systems
One of the key features of our model is that it allows for
the direct backward prediction of dynamics. Namely, given
an observation ft, our network yields the forward predic-
tion via f̂t+1 = χd ◦ C ◦ χe(ft), as well as the backward
estimate using f̌t−1 = χd ◦ D ◦ χe(ft). Time reversibil-
ity may be important in various contexts (Greydanus et al.,
2019). For instance, given two different poses of a person,
we can consider the trajectory from the first pose to the
second or the other way around. Typically, neural networks
require that we re-train the model in the reverse direction

Supplementary Materials

cyl cyl sph pen pen pen pen sst sst

2.5e+02

5.0e+02

7.5e+02

1.0e+03

1.2e+03

Ti
m

e
(m

s)

DAE (Lusch et al., 2018)
Ours

Figure 1. We show above the average run time for an epoch in
milliseconds for several of the test cases in this work. In general,
our model is almost two times slower than DAE during training.

to be able to predict backwards. In contrast, Koopman-
based methods can be used for this task as the Koopman
matrix is linear and thus back forecasting can be obtained
simply via f̄t−1 = χd ◦ C−1 ◦ χe(ft). We show in Fig. 2
the backward prediction error computed with f̄t−1 for the
cylinder flow data using our model and the DAE (blue and
red curves). In addition, as our model computes the matrix
D, we also show the errors obtained for f̌t−1. The solid
lines correspond to the clean version of the data, whereas
the dashed lines are related to its noisy version. Overall, our
model clearly outperforms DAE by an order of magnitude
difference, indicating the overfitting in DAE.

0 10 20 30 40 50
t

0.0

0.5

1.0

1.5

2.0

Ba
ck

wa
rd

 p
re

di
ct

io
n

er
ro

r

DAE (Lusch et al., 2018)
Ours
Ours*

Figure 2. The cylinder flow data is used for backward prediction
with our model (red) and DAE (blue). Our results hint that DAE
overfits in the forward direction, whereas our network generalizes
well when the time is reversed.

References
Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian

neural networks. In Advances in Neural Information
Processing Systems, pp. 15353–15363, 2019.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning
for universal linear embeddings of nonlinear dynamics.
Nature Communications, 9(1):4950, 2018.

