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Figure 1: Our method computes a point-to-point map and its inverse between a pair of shapes (left). Using the map, we transfer a texture
from the source shape to the target, and we show the geodesic error obtained with our map, where white is no error and red is maximum error.
In addition, we compose the map with its inverse, and use it to push a texture from the source shape to itself (right), obtaining accurately
matched shapes, except for a negligible subset of points.

Abstract
We propose a new method for computing accurate point-to-point mappings between a pair of triangle meshes given imperfect
initial correspondences. Unlike the majority of existing techniques, we optimize for a map while leveraging information from
the inverse map, yielding results which are highly consistent with respect to composition of mappings. Remarkably, our method
considers only a linear number of candidate points on the target shape, allowing us to work directly with high resolution
meshes, and to avoid a delicate and possibly error-prone up-sampling procedure. Key to this dimensionality reduction is a
novel candidate selection process, where the mapped points drift over the target shape, finalizing their location based on
intrinsic distortion measures. Overall, we arrive at an iterative scheme where at each step we optimize for the map and its
inverse by solving two relaxed Quadratic Assignment Problems using off-the-shelf optimization tools. We provide quantitative
and qualitative comparison of our method with several existing techniques, and show that it provides a powerful matching tool
when accurate and consistent correspondences are required.

1. Introduction

Estimating correspondences between three-dimensional (3D)
shapes is an essential building block in many algorithms related
to shape interpolation, deformation transfer and shape retrieval, to
name a few. Different approaches usually focus either on pairs of
shapes, or consider whole collections. The generated maps differ
by their density (sparse vs. dense), accuracy, and consistency, i.e.,
whether compositions of maps along cycles lead to the identity

† These authors contributed equally to this work.

mapping. Often, correspondences between shape pairs are dense,
less consistent and of moderate accuracy, whereas maps computed
for shape collections are sparse, more consistent and of higher ac-
curacy. In this work, we propose a novel mapping method for pairs
of shapes, which utilizes the Quadratic Assignment Problem (QAP)
formulation. It is solved using an efficient splitting method, yield-
ing dense, accurate and approximately consistent correspondences.

To date, the majority of matching techniques designed for pairs
of shapes concentrate on obtaining the map, but do not exploit or
estimate its inverse. In practice, re-running the algorithm with ex-
changed roles for the source and target shapes will produce the
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inverse map. However, high consistency is difficult to achieve,
since the mappings are computed independently. Notable excep-
tions propose simultaneous optimization of low-dimensional ma-
trices which represent the map and its inverse ( [ERGB16], among
others). Unfortunately, recovering dense maps in this setup is a
challenging task in itself. Approaches guaranteeing bijective maps
are also available and are based on compatible parametrization of
shapes (e.g., [AL16]), or kernel density estimation directly in the
space of permutation matrices [VLR∗17]. We opt to relax the bi-
jectivity constraint, and perform joint optimization for the map and
its inverse. Furthermore, since we directly solve for dense maps, a
map recovery step is not needed.

Computing maps in shape collections was proven useful in
Nguyen et al. [NBCW∗11] and following work. In particular, a re-
quirement that compositions along cycles approximate the identity
map strongly regularizes the problem, allowing to improve a given
set of initial maps. However, the resulting minimization presents
difficult computational challenges which can be mitigated by gen-
erating sparse correspondences [HG13], or by aligning reduced
functional spaces [HWG14]. Nevertheless, these methods require
some post-processing to produce dense maps. In contrast, we match
a pair of shapes while promoting cycle-consistency for point-to-
point correspondences. The information stored in the map and its
inverse allows us to obtain good results on benchmark data, without
the extra knowledge a complete collection provides.

We pose our consistent mapping method as a Coupled Quadratic
Assignment Problem with a cycle-consistency constraint, replacing
the usual bijectivity requirement. There are two main challenges
in converting this methodology into a practical solution. First, this
high-dimensional problem is computationally prohibitive even for
estimating a one-directional map, let alone solving for the map and
its inverse simultaneously. Second, efficient minimization is diffi-
cult, as these problems are NP-hard in general. To tackle the first
difficulty, we propose an iterative splitting scheme, where we solve
for each mapping direction separately while exploiting information
stored in the maps from the previous iteration. In addition, we limit
each point to improve its mapped location, considering a small sub-
set of new candidate points. Finally, we further relax the obtained
optimization tasks to linear programming problems and employ a
state-of-the-art algorithm based on tree-reweighted message pass-
ing (TRW) [Kol06] to arrive at an effective mapping framework.

In this paper, we suggest an effective methodology for producing
approximately consistent point-to-point mappings between pairs of
shapes, whose accuracy significantly exceeds current state-of-the-
art results. Our method does not assume anything about the spatial
embedding of the shapes, it is not restricted to isometric surfaces
and it is easy to implement and solve using available minimiza-
tion tools. In general, our approach provides an efficient solution
when high-quality correspondences are required, at the cost of re-
laxing the exact bijectivity constraint, while producing good map
consistency. We evaluate the proposed method on a few benchmark
datasets, and demonstrate the advantages of our approach for com-
puting shape correspondences using several quantitative and quali-
tative error measures.

2. Related Work

The problem of computing mapping between surfaces has been ex-
tensively studied, and thus we refer the reader to recent surveys for
a thorough review of previous geometry-based [VKZHCO11] and
data driven [XKH∗16] approaches. Here, we focus our attention
on the main different methodologies for shape matching, where we
classify existing work based on their required input, as well as their
accuracy and cycle-consistency or bijectivity features.

Distortion minimization. A common approach for generating
maps between surfaces is via minimizing the distortion they pro-
duce, which can be estimated using pointwise surface descriptors,
such as the Heat Kernel Signature [SOG09], pairwise measures,
such as geodesic distance differences [BBK06], or a combination
of the two [DK10]. One well-known approach utilizing this idea
is Blended Intrinsic Maps (BIM) [KLF11], where a collection of
maps are blended together with a set of weights, optimized to pro-
duce minimal distortion smooth maps. The distortion measures can
be further plugged into an integer quadratic programming prob-
lem with bijectivity constraints known as the Quadratic Assignment
Problem (QAP) [KB57].

Unfortunately, directly solving QAP is feasible only for a very
small number of variables [LdABN∗07]. To deal with the in-
herent computational challenges, various relaxations have been
proposed in the literature, including spectral techniques [LH05,
ADK16], continuous quadratic optimization [BBK06], linear pro-
gramming [RBA∗12], and semidefinite programming [KKBL15].
Other works [VLR∗17, CK15] employ discrete optimization relax-
ations, allowing to match a sparse or moderately size set of fea-
ture points. However, to extend their correspondences to a complete
map, some up-sampling procedure is required. Thus, several multi-
resolution approaches [SY11, RDK12] were suggested to alleviate
this issue, producing dense point-to-point maps. Our approach can
be also interpreted as a variant of QAP, but, as opposed to other
techniques, we completely avoid the potentially problematic multi-
resolution methodology.

Embedding into an intermediate domain. An alternative line of
work for computing correspondences embeds the input shapes into
a joint intermediate domain, where the mapping can be computed
more efficiently. Examples of this approach consider domains such
as a high dimensional Euclidean space [EK03], the space spanned
by a reduced eigendecomposition of the Laplacian [MHK∗08], the
complex plane [LF09], or a hyperbolic orbifold [AL16]. In the lat-
ter work, the resulting mappings are smooth and guaranteed to be
cycle-consistent across a collection, showing outstanding results
in practice on challenging data. However, their method requires a
small subset of manually selected feature landmarks, limiting its
applicability and affecting its overall behavior.

Generalized maps. Instead of encoding mappings as point-to-
point correspondences, [OBCS∗12] proposed to align surfaces
via their functional spaces. The resulting Functional Maps are
real-valued matrices from which a dense map can be extracted
[OCB∗17]. In a related work, Shtern and Kimmel [SK14] of-
fered an automatic iterative algorithm to significantly improve
noisy or sparse input maps, by aligning the spectral kernels of
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the shapes. Finally, [SPKS16] introduces a generalized notion of
a mapping through minimization of the Gromov—Wasserstein dis-
tance, matching probability distributions across shapes.

Consistent correspondences. When a whole collection of shapes
is given, [NBCW∗11] observed that maintaining cycle-consistency
within the collection is advantageous to the matching process.
However, while a few methods offered dense outputs (e.g.,
[HZG∗12]), most existing techniques produce sparse matchings.
Other methods focused on optimizing the functional map and its
inverse while promoting cycle-consistency using functional map
composition [ERGB16, RO18] or an adjoint operator [HO17].
However, in this setup, extracting a dense map is challenging as
the maps are encoded as low dimensional matrices. In comparison,
our method directly optimizes for a dense map and thus we avoid
the error prone task of map recovery from a given functional map.
Recently, [ESBC19] proposed an optimization framework which is
similar in nature to ours, solving jointly for the correspondence and
its inverse. Their approach is intrinsic to the shape as our method,
but they utilize a different energy functional and obtain a global op-
timization problem, whereas ours is local. Finally, Windheuser et
al. [WSSC11] also include the inverse map in their linear program-
ming relaxation. However, they facilitate only unary terms based
on the bending energy, whereas our method utilizes both unary and
pairwise terms.

Learning approaches. Recently, several learning approaches have
emerged, employing random forests [RRBW∗14], graph-based
neural networks [LRR∗17] and fully connected ResNets [RO18].
These methods require a training set of matched shapes to perform
learning, whereas our approach does not require any training data.

3. Overview and Background

Our goal is to estimate high quality correspondences between a
given pair of shapes, M1 and M2. We denote by φ21 a discrete
point-to-point map, associating every point inM1 with a point in
M2, and similarly, φ12 :M2→M1. As discrete shapes are often
represented with thousands of points, applying exhaustive search
approaches is impractical due to the factorial number of possible
matchings. One way to deal with the huge amount of possibilities is
through a definition of an optimization problem whose minimizer is
as close as possible to the correct map we expect to obtain. A com-
mon choice in this context is the Quadratic Assignment Problem
(QAP) [KB57], which is a special quadratic programming problem
with the challenging bijectivity and binary variables constraints. In
Section 4, we describe how to extend the standard QAP to the case
of estimating coupled correspondences.

Similar to QAP, our formulation also involves binary constraints,
and thus is hard to solve in practice. Moreover, while the QAP
point-of-view regularizes the space of solutions, dimensionality re-
mains a challenge, hindering the construction of an efficient algo-
rithm. To cope with these difficulties, in Section 5 we present a
novel method to solve our coupled mapping problem. Specifically,
we suggest to split the global coupled optimization to two simpler
sub-problems of computing one-sided mappings while exploiting
information encoded in the inverse map. In Fig. 2, we compare the

results of our method, highlighting the benefits of using the data
from the inverse map vs. discarding it. Our splitting scheme leads
to an iterative process where at each step we solve two modified
QAPs. In addition, we construct the matrix components of each
QAP such that only a linear amount of its entries are effective in
the optimization. Combined together, we arrive at a formulation
that naturally lends itself to efficient and provably convergent lin-
ear relaxation techniques, which we solve using standard tools.

4. Coupled Quadratic Assignment Problem

In what follows, we formulate our coupled mapping approach as a
generalization of the Quadratic Assignment Problem, considering
the map and its inverse as separate variables while expressing the
bijectivity constraint as a cycle-consistency requirement (Subsec-
tion 4.1). We then describe the particular formulations we used for
the unary and pairwise terms of our Coupled QAP (CQAP) (Sub-
section 4.2).

4.1. Problem formulation

We assume to be given two shapes represented by triangle meshes,
M1 andM2, each given by a uniform sampling of n points from

Figure 2: The inverse map is beneficial to the matching task. We
map the woman (left, middle) to the man (right) using our method,
without the inverse map (left) and with it (middle). The obtained
correspondences allow us to transfer a texture from the target shape
to the source shapes, where parts, invisible from the camera’s view-
point, are omitted [APL14]. Indeed, without the information stored
in the inverse map, the result is of overall poor quality, with many
points (see the stomach and face) being incorrectly mapped. In con-
trast, our result (middle) shows a much better accuracy and suc-
ceeds in recovering most of the mismatched points.
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the original shape. A standard approach for encoding a map φba
is using a binary matrix Xba ∈ Nn×n, where Xba(k, i) = 1 if vertex
i in Ma is mapped to vertex k in Mb, and Xba(k, i) = 0 other-
wise. Standard QAP is formulated as a problem of finding a bi-
jective map from e.g., Ma to Mb [LdABN∗07]. Instead, we use
an additional variable for the inverse directional map, and intro-
duce a cycle-consistency constraint, leading to the following cou-
pled quadratic assignment problem

minimize
x21, x12

{
∑(xba)

T P(xba)+µuT xba

}
,

subject to Xba ·Xab = In, Xba ∈ {0,1}n×n ,

(1)

where the sum and the constraints above apply to a = 1,b = 2 and
a = 2,b = 1. The binary vector {0,1}n2

3 x = vec(X) is a flattened
version of the correspondence matrix X . The matrix P ∈ Rn2×n2

is
a pairwise term, accounting for the global distortion measures, and
u ∈ Rn2

is a unary term, accounting for pointwise differences. The
matrix In is the identity matrix of size n and µ is a scalar weight,
scaling the effect of pointwise vs. pairwise penalties.

We emphasize that under the assumption that the shapes match,
problem (1) should yield the same minimizer as traditional QAP.
Namely, when the consistency constraints hold exactly, X21 and
X12 are permutation matrices. Indeed, at first glance, our formula-
tion (1) seems unnecessarily redundant and more computationally
involved when compared to standard QAP. However, we opt for the
above setup as it fits better to the relaxations and approximations
we suggest next.

4.2. Pointwise and pairwise dissimilarity measures

We define the pointwise and pairwise dissimilarity measures using
intrinsic surface descriptors. Given a point i ∈Ma, we define

Fa(i) =
(

w1 f 1
a (i), ..,wkd f kd

a (i)
)
,

where Fa(i) is a long vector of kd stacked descriptor vectors
f 1
a (i), .., f kd

a (i), along with their respective weights w1, ..,wkd . For
instance, to generate a particular mapping we may use a weighted
combination of the Heat Kernel Signature (HKS) [SOG09] and
Wave Kernel Signature (WKS) [ASC11], see Fig. 3 for an illustra-
tion. Using the above definition, the pointwise distortion measure
is defined as

U(i,k) = |F1(i)−F2(k)|22 , (2)

where i ∈M1 and k ∈M2. Finally, we define u = vec(U) to be
the flattened version of U .

The pairwise distortion quantifies the discrepancy introduced by
the mapping to a local area around each point. Specifically, we use
geodesic distances for that purpose. For each pair of points i, j ∈
M1 that are possibly matched to vertices k, l ∈M2, respectively,
we define the following distortion measure

Pi jkl = |d1(i, j)−d2(k, l)| , (3)

where d1 and d2 are the geodesic distances computed for shapes
M1 andM2. We note that in general other measures could be em-
ployed for the pointwise and pairwise terms. However, since a sig-
nificant portion of our work concentrates on the case of (nearly)

0
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Figure 3: For each point on our shapes, we form a vector of intrin-
sic data. The example above shows the result for the marked red
points on a bar and a twisted bar shapes (left and right, respec-
tively). The plotted graphs correspond to WKS (yellow) and HKS
(purple), with weights 1/45 and 1.

isometric shapes, we adopt the above formulations. Notice that
our measures are symmetric with respect to the source and target
shapes, leading to symmetric matrices, U and P. Thus, we can use
the same u and P terms in Eq. (1), for both map directions.

The time complexity and memory requirements our CQAP (1)
imposes, make it infeasible in most cases, except for extremely low
values of n [LdABN∗07]. While various scalable relaxations for
traditional QAP exist (see e.g., [DML17]), dimensionality remains
a difficult challenge, commonly addressed via up-sampling tech-
niques (see e.g., [VLR∗17]). We proceed by describing the modifi-
cations we employ on the original problem, allowing us to directly
work with high-resolution shapes.

5. Practical Coupled Matching

To mitigate the challenges discussed in Section 4, we propose to
split the above CQAP (1) into two sub-problems, iteratively opti-
mizing separately for x21 and x12, while exploiting the mapping in-
formation available from the previous step. Inspired by [HZG∗12],
we devise a stopping condition based on the current maps quality.
Specifically, given maps xt

21 and xt
12 from step t, we perform the

following steps

1. solve for xt+1
21 , using xt

21 and x̃t
21 := (xt

12)
−1 ,

2. solve for xt+1
12 , using xt

12 and x̃t
12 := (xt+1

21 )−1 ,

as long as the consistency constraint is improving, namely, as long
as

∑ |X
t+1
ba ·X

t+1
ab − In|2F ≤∑ |X

t
ba ·X

t
ab− In|2F , (4)

where | · |F is the Frobenius norm. Unfortunately, since we deal
with approximate bijections, x̃t

21 and x̃t
12 are not well-defined. In

particular, x̃t
ba(i) may be empty or include one or several points. In

Section 6, we describe how x̃t
ba can be uniquely defined, and what

type of initial correspondences x̃0
21, x̃0

12, we use.

Estimating xt+1
21 and xt+1

12 is achieved via a relaxed version of the
standard QAP, where we omit the bijectivity requirement. Formally,
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Figure 4: An illustration of the proposed candidate selection on
a toy example. Red circles denote the locations of xt(i), x̃t(i), the
colored area denotes the unified 5-ring neighborhoods of the two
vertices, and blue circles denote 30 vertices sampled using the far-
thest point sampling.

we consider the problem

minimize
x

xT Px+µuT x s.t. 1
T X = 1

T ,X ∈ {0,1}n×n , (5)

where 1 is an all-ones vector of size n, and thus the constraint
1T X = 1T means that every point on the source shape is mapped
to a single (not necessarily unique) point on the target shape. From
now on, we denote the above problem as RQAP (relaxed QAP).

To motivate our choice of relaxation, we stress that while the bi-
jectivity condition is omitted in Eq. (5), the maps x21 and x12 are
still coupled in our iterative procedure via their approximated in-
verses. In particular, the candidate nodes for e.g., x21 are taken so
that a node which leads to a bijective map appears in the candidate
list. In practice this heuristic significantly simplifies problem (1),
while achieving good consistency results, see Fig. 11. Finally, we
mention that the bijective constraints Xba ·Xab = In are non-convex
and thus require special handling. For instance, a similar setup to
ours was recently proposed in the non-linear dynamics commu-
nity [AYB19]. To deal with their difficult constraint, the authors
propose to split the optimization using the Alternating Direction
Method of Multipliers (ADMM). Computing a map in their mini-
mization requires an estimate of the inverse map at each iteration,
as is proposed in our approach. This example empirically supports
our splitting methodology, and thus it provides a strong indication
that our heuristic is effective.

In addition to our relaxation, one may consider continuous lin-
ear relaxations to problem (5), allowing to optimize for up to
n = 15× 103 points [VLB∗17]. However, high resolution shapes
still require using some multiscale techniques. Instead, we aim at
sparsifying u and P, thus avoiding the up-sampling step altogether.
To this end, we consider two simplifying assumptions. First, in-
stead of considering all combinations of point pairs (i, j) in the
pairwise term (3), we focus on 1-ring relations. Namely, we limit
the pairwise contributions to pairs of vertices sharing an edge in
the triangulation of the source shape. Formally, it means that Pi jkl
is∞ for every combination (i, j) which is not an edge in the source
shape. Second, we limit the candidate matches of a point i ∈M1
to m uniformly sampled points from the r-radius neighborhoods
of the pair (xt(i), x̃t(i)) ∈ M2,∀i. That is, for each point on the
source shape, the maps x and x̃ provide a pair of candidate points

on the target shape. We consider the set of points that are within
geodesic distance r from this pair, and sample m vertices from the
entire set using farthest point sampling [HS85]. We illustrate our
uniform sampling procedure in Fig. 4. Reducing the amount of pos-
sible candidate points to m� n leads to m non-infinite entries in
U , per point, and m2 non-infinite entries in the matrix P, per pair
of points, allowing, in practice, to operate on shapes with higher
resolutions. For instance, we show in Fig. 5 our result on a pair of
shapes with≈ 25k vertices, where no post-processing up-sampling
was required.

Overall, the above relaxations and approximations result in a
sparse RQAP to be solved separately for each map, x21 and x12.
Still, as our matrices P are not positive semi-definite, a further re-
laxation of the binary constraints to real variables will leave us with
non-convex quadratic programming problems, which are known to
be NP-hard in general [PV91]. Alternatively, we show in Section 6
how our relaxed problem can be fitted into a Markov Random Field
(MRF) formulation, allowing to use non-necessarily convex energy
functionals, and can be subsequently solved via provably conver-
gent tree-reweighted message passing method [Kol06].

6. Implementation Details

Sparse RQAP as a discrete MRF. At each iteration, we solve two
sparse relaxed quadratic assignment problems, given by Eq. (5),
where only a linear number of elements in P and U affect the op-
timization. For each point i ∈Ma, we denote by Φ(i) the set of
m vertex indices fromMb, obtained using the farthest point sam-
pling described in Section 5. We denote by P and U the pairwise
and unary terms consisting of only non-infinite entries from P and
U , corresponding to the set Φ(i) for every i. In the language of
discrete Markov Random Fields, the set Φ(i) represents the labels
each vertex i can be associated with, m labels per vertex. Now, the
objective function in problem (5) can be written as

E(φ |θ) = ∑
i

θi(k)+ ∑
(i, j)

θi j(k, l) , (6)

Figure 5: Texture mapping on TOSCA shapes with ≈ 25k vertices.
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Figure 6: Correspondence quality illustration using texture transfer. In each row, we show a pair of shapes rendered from five different
viewpoints, for which we computed a correspondence using our method. The maps are used to pull a texture from the target shape (right) to
the source shape (left) for each of the viewpoints. In addition, we show the geodesic error our maps exhibit on the smaller source shapes.
There, white color corresponds to zero error, and red to the maximal error. We note that for the above examples, more than 90% of the points
were mapped to their ground truth locations.

where θi(k) = Uik and θi j(k, l) = Pi jkl and k ∈ Φ(i), l ∈ Φ( j). A
minimum of E over the parameter set θ corresponds to a maxi-
mum a-posteriori (MAP) labeling φ [GG84] in a discrete MRF with
unary and pairwise potentials. This energy is typically considered
for matching problems arising in computer vision, such as image
segmentation and stereo matching [SZS∗08]. Finally, problem (6)
can be solved directly using established discrete optimization tools.
Specifically, we employ the TRW-S [Kol06] algorithm for this task.

Initial maps. Our method takes as input a pair of triangle meshes
M1 and M2 along with two imperfect and, possibly, noisy ini-
tial point-to-point maps φ

0
21 :M1 →M2 and φ

0
12 :M2 →M1.

As we opted for an as-automatic-as-possible method, we used ini-
tial maps computed with automatic techniques. Specifically, all the
results we show in the paper were obtained by initializing the pro-
posed method using either Blended Intrinsic Maps (BIM) [KLF11]
or Iterative Closest Spectral Kernel Maps (ICSKM) [SK14]. We
note that while we focused on input from these methods, any other
matching technique could be considered instead. Given φ

0
21, φ

0
12,

and the set of parameters µ and w1, ..,wkd , our algorithm is fully
automatic and does not require any user interaction or matched fea-

ture points. We show a few results of our method in Fig. 6 given ini-
tial ICSKM maps, where we evaluate the obtained maps via texture
transfer from the target shapes to the source shapes.

Inverse map computation. The candidate set selection, described
in Section 5, requires having the map φ̃ba, where φ̃ba denotes the
inverse map of φab. Naturally, inferring φ̃ba for a non-bijective dis-
crete map φab is challenging, as φ̃ba(i) could be undefined or in-
clude several points. To this end, we propose a simple approach to
compute φ̃ba, which produces a well-defined map that contains a
single match for every vertex i inMa. We denote by Ψ(i) the set
of vertices k ∈Mb for which i = φab(k). Then, the inverse map is
defined as follows

φ̃ba(i) =

{
Ψ(i), if Ψ(i) 6= ∅
φba(i), otherwise

where Ψ(i) is the vertex in Mb, nearest, in terms of Euclidean
distance, to the average of the set Ψ(i). Namely, if we have several
candidate points for the inverse, we simply take a vertex in Mb
which is closest to their average, and if we have no candidates, we
use the opposite-directional map φba. Finally, we emphasize that,
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function COMAP(x0
21,x

0
12)

xt
21← x0

21, xt
12← x0

12 . Initialization
ct = ∑ |X t

ab ·X
t
ba− In|2F

for j = 1,2, ... do
x̃t

21← x
[
(φt

12)
−1
]

xt
21←MAP(xt

21, x̃
t
21,r j) . Infer new map x21

x̃t
12← x

[
(φt

21)
−1
]

xt
12←MAP(xt

12, x̃
t
12,r j) . Infer new map x12

c← ∑ |X t
ab ·X

t
ba− In|2F

if c > ct then . Evaluate Eq. (4)
break

ct ← c
return xt

21,x
t
12

function MAP(xt , x̃t ,r) . Compute map xt+1 :Ma→Mb

for all i = 1, ..,n do
Φ(i)← FPS(xt(i), x̃t(i),r)

Uik ← |Fa(i)−Fb(k)|2 . Pointwise distortions, Eq. (2)
Pi jkl ← |da(i, j)−db(k, l)| . Pairwise distortions, Eq. (3)
xt+1← TRW-S(U ,P) . Solve Eq. (5)
return xt+1

Algorithm 1: An iterative splitting scheme for computing the map
between the source and target shape as well as its inverse. The
function FPS performs farthest point sampling of m points of
the r j-radius neighborhoods of its inputs. The function TRW-S is
an implementation of the tree-reweighted message passing algo-
rithm [Kol06]. See more details in Section 6.

while we took the above simple approach, other, more sophisticated
tools for computing the inverse map could be employed, potentially
providing an improved label set Φ(i).

Shape descriptors and geodesic distances. To construct the unary
term U , we employed three different intrinsic pointwise descrip-
tors, such as the Heat Kernel Signature (HKS) [SOG09], Wave
Kernel Signature (WKS) [ASC11], and Signature of Histogram of
OrienTations (SHOT) [TSDS10]. In Section 7, we provide the ac-
tual descriptor weights w1, ..,w3 we used for each dataset. Geodesic
distances were computed using the fast marching method [KS98].
For meshes with up 15× 103 vertices, the entire distance matrices
were precomputed and stored in memory. For larger meshes, we
used the distance approximation method suggested in [SAZK15]
using a truncated geodesic distance basis of size 50 with 100 sam-
ples. This approximation tends to produce larger relative errors for
smaller distances, therefore, in addition to the truncated geodesic
distance basis, we pre-computed and stored distances from all ver-
tices to their 10-ring neighbors. These precise distances were used
for the farthest point sampling at the candidate selection step.

Technical details. We implemented our algorithm in MATLAB; its
pseudo-code is provided in Algorithm 1. The optimization was per-

formed using an implementation of the TRWS algorithm [Kol06].
Computation was performed on a PC equipped with a 3.5 GHz 6-
Core Intel Xeon E5 CPU, and 64 GB RAM. Table 1 shows typical
run times of our method for shape pairs of different resolutions.
We report three computation times per pair of shapes, aggregated
over three optimization iterations of our algorithm, which was ap-
plied using the setup described in Section 7.1. In the pre-processing
step, we load geodesic distance matrices and compute three differ-
ent shape descriptors (HKS, WKS and SHOT). The data prepara-
tion step includes computation of the candidate points, and forming
the unary and the pairwise terms for the MRF. Lastly, we list the to-
tal computation time of the six TRWS calls. We note that for larger
shapes, the farthest point sampling accounts for, roughly, 65% of
the time spent during data preparation when choosing the candidate
points from the union of 6-ring neighborhoods, and for 62% when
using 4-ring neighborhoods. It is possible that other, less-time con-
suming, techniques may be used to produce candidate sets for the
MRF computation. We leave further consideration of these ideas
for future work.

7. Evaluation and Results

We compared our method on benchmark datasets, with known
point-to-point mappings, including SCAPE [ASP∗04], TOSCA
[BBK08] and FAUST [BRLB14]. The data contain various human
and animal shapes, allowing to experiment with isometric shapes
within the same class, or consider the quasi-isometric case, taking
shapes of different categories. We utilize several evaluation proto-
cols to highlight the precision and consistency of our maps, such as
the cumulative [KLF11] and average [CK15] geodesic errors, and
information transfer between the shapes, including texture or color
functions. We compare our method to state-of-the-art approaches
such as Blended Intrinsic Maps (BIM) [KLF11], Functional Maps
(FMAPS) [OBCS∗12], Iterative Closest Spectral Kernel Maps
(ICSKM) [SK14], Spectral Generalized Multi-Dimensional Scal-
ing (SGMDS) [ADK16], Hyperbolic Orbifold Tutte embeddings
(HOT) [AL16], Kernel Matching (KM) [VLB∗17], and the work
of Chen and Koltun (CGF) [CK15].

7.1. Benchmark results

We evaluate our method on pairs of shapes from the above datasets,
and present the obtained cumulative geodesic error measures for
SCAPE (Fig. 9), TOSCA (Fig. 10) and FAUST (Fig. 7). The eval-
uation is performed using the procedure described in [KLF11].
Namely, we calculate the distances between the mapped points and
the ground truth correspondences, for each pair of shapes, and show

# V pre-processing (sec) data preparation TRW-S
4344 3.82 0.45 7.54
6890 7.36 1.3 8.52

12500 20.22 3.68 15.80
19248 18.27 8.55 26.45
27894 23.50 16.20 38.39

Table 1: Timings (in minutes, unless stated otherwise) of our algo-
rithm tested on shapes with varying resolutions.
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Figure 7: Cumulative geodesic error measures for FAUST, separated to same subject different pose class (intra, left) and different subjects
(inter, right). See the text in Subsection 7.1 for more details.

the average aggregated percentage of points that are within a cer-
tain geodesic distance. For SCAPE and TOSCA we took the pairs
used in BIM [KLF11], and for FAUST, we distinguish between the
cases of same subject in different poses (intra) and different sub-
jects (inter), using the same pairs as in [CK15]. We use “Ours (1)”
to denote the results of our method initialized with maps produced
by ICSKM, and “Ours (2)” the results when initializing with maps
produced by BIM. We stress that compared to other state-of-the-art
methods, BIM achieves relatively poor maps as we show in the cu-
mulative geodesic error measures in Figs. 7,9,10. Using BIM as a
baseline for refinement is thus a challenging setup, and it highlights
the benefits of our matching procedure. To compare against meth-
ods whose output is a precise map, we project their results to the
vertices of the target shape, yielding point-to-point maps.

The parameters we used for all pairs in a certain dataset were
µ = 2, w = [0,10,1] (SCAPE), µ = 20, w = [20,0,1] (FAUST),
and µ= .2, w= [0,0,1] (TOSCA), where the weights correspond to
HKS, WKS, and SHOT, respectively. In our experience, the SHOT
descriptors improved the results significantly and thus we them
across all our experiments. The weights vector w is chosen so that
HKS/WKS will share the same scale as SHOT. The parameter µ
balances between our unary and pairwise terms. In cases where the
geodesic distances are not expect to lead to good maps we take µ to
be large as in the quasi-isometric scenario of FAUST inter. Finally,
to obtain a consistent behavior of our algorithm across all shape
pairs, we fix the Algorithm 1 to run 3 times with ranges that corre-
spond to the 6-, 4- and 3-ring neighborhoods. This heuristic choice
is reminiscent of a hierarchical approach where at each iteration
the search space of vertices shrinks, as the method converges to a
solution.

Overall, our approach matches more points to the ground truth
compared to existing techniques with a large margin of ≈ 18% for
SCAPE,≈ 28% for TOSCA,≈ 35% for FAUST intra , and≈ 36%
FAUST inter, measured from our best results, “Ours (1)”, to the
best available results of other methods. We note that even when
starting from relatively noisy maps provided by BIM, we manage
to output high quality correspondences in “Ours (2)”, surpassing
many of current state-of-the-art methods. Moreover, we indicate
that some methods such as HOT perform better for longer-range
distances. Finally, we show in Fig. 13 the average geodesic er-

ror obtained for each of the pairs in the benchmarks, where each
method is sorted independently to the others, except for our results
which are sorted with respect to ICSKM or BIM. We observe that
our results significantly improve the average error of our starting
point and is comparable to results of state-of-the-art techniques.

7.2. Consistency results

We evaluate the cycle-consistency of the maps obtained with our
method. To this end, we generate the map and its inverse for a
pair of shapes and compute their composition, yielding a map from
the source shape to itself. We emphasize that for dense correspon-
dences, such an experiment is extremely challenging as points can
“drift” over cycles, thus exhibiting further error. We demonstrate
our consistency results in Fig. 1 and Fig. 8, where we map a tex-
ture from the source shape to itself using the composed map. The
source and target shapes correspond to the left and right smaller
objects behind, respectively. In addition, we test these maps in the
context of the benchmarks mentioned in Subsection 7.1 and we
show the results in Fig. 11. Our results outperform all of the meth-
ods, except for approaches which produce bijective maps such as
KM and HOT. We emphasize that HOT is fully cycle-consistent
and thus the graph for their precise correspondences would just
be 1, however, it is lower due to the projection we perform to ob-
tain dense (i.e., point-to-point) mappings. Interestingly, map accu-
racy does not guarantee cycle-consistency – cf. FMAPS graphs for
SCAPE in Figs. 9 and 11, where the obtained maps are relatively
accurate but the average cycle-consistency constraint is of poor
quality. The opposite also occurs – cf. BIM graphs for SCAPE in
Figs. 9 and 11, where the average consistency is much higher than
the map accuracy. These results further strengthen the observation
in [NBCW∗11] and other works regarding the regularizing effect
of the cycle-consistency requirement.

7.3. Comparison with KM and HOT

We compare our results to KM and HOT in the challenging case
of quasi-isometric shapes, considering different subjects from the
FAUST dataset. Our method produces point-to-point (dense) maps,
which are not guaranteed to be smooth, whereas KM outputs dense
bijective correspondences and HOT generates smooth and precise

c© 2019 The Author(s)
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Figure 8: Texturing shapes over cycles is particularly challenging for point-to-point correspondences since errors are accumulated. Never-
theless, our method produces remarkable results on the examples above, revealing an insignificant amount of error.

bijections. Namely, in HOT, each point on the source shape is
mapped to a point in one of the triangles of the target surface. As
the triangle meshes in this example share the same connectivity, we
projected HOT precise maps to the closest vertex, damaging their
overall smooth nature, but allowing for a better precision evalua-
tion. We show in Fig. 12 the results of mapping the human shapes,
which appear to the left, to the right shape, and we transfer a tex-
ture from the target shape (right) using the ground-truth map (left),
our result (middle-left), KM’s map (middle) and HOT’s projected
matching (middle-right). Our output is the closest to the ground-
truth in this example displaying minor incorrect matches, whereas
the other methods display more error around the stomach and legs.
We emphasize that while our method uses the geodesic distances in
the pairwise term and thus assumes an underlying isometry, it nev-
ertheless attains good results in the quasi-isometric case as we show
for the FAUST dataset. However, if the shapes are non-isometric as
in e.g., SHREC07 [GBP07], different unary and pairwise compo-
nents may be required, see e.g., [EHA∗19]. We leave this direction
for further investigation and future work.
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Figure 9: Cumulative geodesic error measures for SCAPE.

7.4. Coupled vs. non-coupled matching

To quantify the effect of utilizing the inverse map in the matching
process, we apply our method twice on the benchmarks: first, with-
out using information from the inverse correspondences, and sec-
ond, with this information. We show in Fig. 14 the graphs obtained
from this experiment, where we demonstrate a clear advantage to
using inverse map information. Specifically, the average cumulative
geodesic error has improved by ≈ 1% (SCAPE), ≈ 4% (TOSCA),
≈ 3% (FAUST intra), and ≈ 10% (FAUST inter).

7.5. Matching with mesh topology changes

We additionally compared the performance of our method and
other approaches on a more challenging scenario. All FAUST mod-
els share the same connectivity, which may affect the mapping re-
sults of different methods. In the following experiment, we inde-
pendently re-meshed all the models in the FAUST dataset, to have
around 5000 vertices, and re-computed the correspondences. The
re-meshing was done in MeshLab using [GH97]. In Fig. 15 we
evaluate the geodesic errors obtained by ICSKM, BIM, FMAPS,
HOT, and our technique, initialized with ICSKM and BIM. We ob-
serve that in this case too, the proposed method significantly im-
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Figure 10: Cumulative geodesic error measures for TOSCA.
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Figure 11: Cumulative geodesic error measures for the cycle-composed maps evaluated for each of the above methods on the benchmarks.

proves both BIM and ICSKM results, and outperforms the rest of
the methods, especially for small range geodesic distance errors
(< 0.005).

8. Limitations

One limitation of our method is that we assume to be given a pair
of initial dense correspondences. While there exist automatic map-
ping tools for a large range of shapes (such as BIM and ICSKM),
a stand-alone machinery is often preferred. In this context we note
that our method works best when the correct matches are in close

GT Ours KM HOT

Figure 12: In the challenging setting of mapping quasi-isometric
shapes, our method yields a result (middle-left) which is more
accurate when compared to state-of-the-art techniques such as
KM [VLB∗17] (middle) and HOT [AL16] (middle-right) evaluated
against the ground truth result (left). The target shape, from which
the texture was pulled, is shown on the right.

proximity to the initial correspondences. A natural approach would
then be to initially match between sub-sampled versions of the
given shapes, followed by a drift step, allowing points to finalize
their destination. Indeed, the work of [CK15] and [VLB∗17] fol-
low this general idea, however, we observe that mismatches during
the initial step severely affect the overall behavior of a matching al-
gorithm. Another disadvantage of our method involves its discrete
nature as we output dense, point-to-point maps, where in many
situations, precise, point-to-triangle correspondences allow greater
flexibility. We leave further investigation of these shortcomings to
future work.

9. Conclusions and Future Work

In this paper, we presented a new method for computing dense and
approximately consistent maps between a pair of triangle meshes.
Our method is fully intrinsic, it does not require input feature
points, and it is applicable in the non-isometric case. Key to the ro-
bustness of our method is a novel iterative scheme which exploits
information stored in the inverse map, while considering a linear
number of candidate points per optimization iteration. Thus, we can
work directly with full resolution shapes and avoid the potentially
error-prone process of hierarchical matching. Our algorithm is sim-
ple to implement, can employ existing discrete optimization tools,
and its results are more accurate and consistent when compared to
state-of-the-art methods.

In the future, we would like to extend our method to include
smoothness constraints, possibly generalizing our approach to yield
point-to-triangle correspondences. In addition, we are interested in
incorporating bijectivity as a hard constraint, guaranteeing exactly
consistent maps. Finally, we believe that our approach could be also
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Figure 13: The average geodesic error is presented for each of the tested pairs in the benchmarks, where the results are sorted independently
for each of the other methods, i.e., pair 40 for BIM and FMAPS may be different.

considered in the case of symmetric shapes, to produce maps which
respect the underlying symmetry.
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