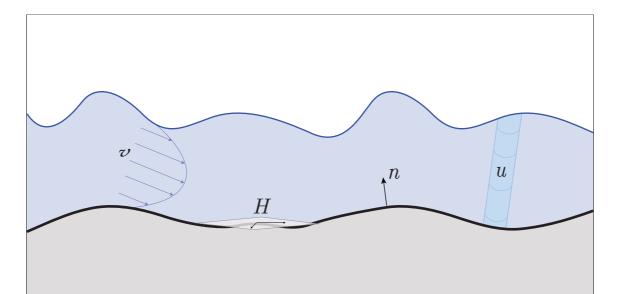


Fluid Simulation on Curved Surfaces

Omri Azencot Advisor: Asst. Prof. Miri Ben-Chen **Computer Science Department** Technion – Israel Institute of Technology

Simulate thin films



Solve their gradient-flow formulation

 $\mathcal{E}(u) = \int au + \frac{\varepsilon}{2} bu^2 + \frac{\varepsilon}{2} |\operatorname{grad} u|^2 \, \mathrm{d}a$

 $F_u(v,v) = \int v M(u)^{-1} v \, da, \quad \partial_t u = -\operatorname{div}(uv)$

Our approach: natural time discretization

 $\min_{u,v} \{ \frac{1}{2\tau} F_{u^k}(v,v) + \mathcal{E}(u) \}$

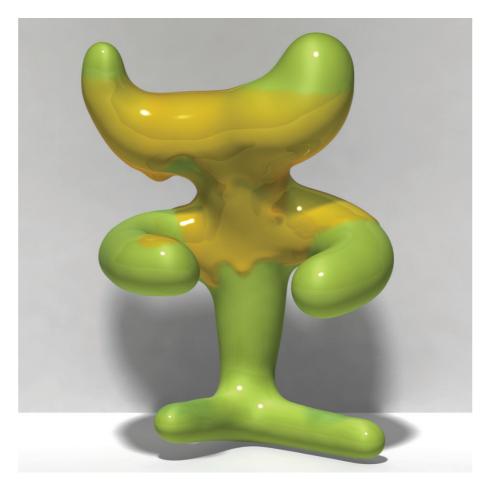
subject to $u = \exp(-\tau D_v - \tau \operatorname{div} v) u^k$

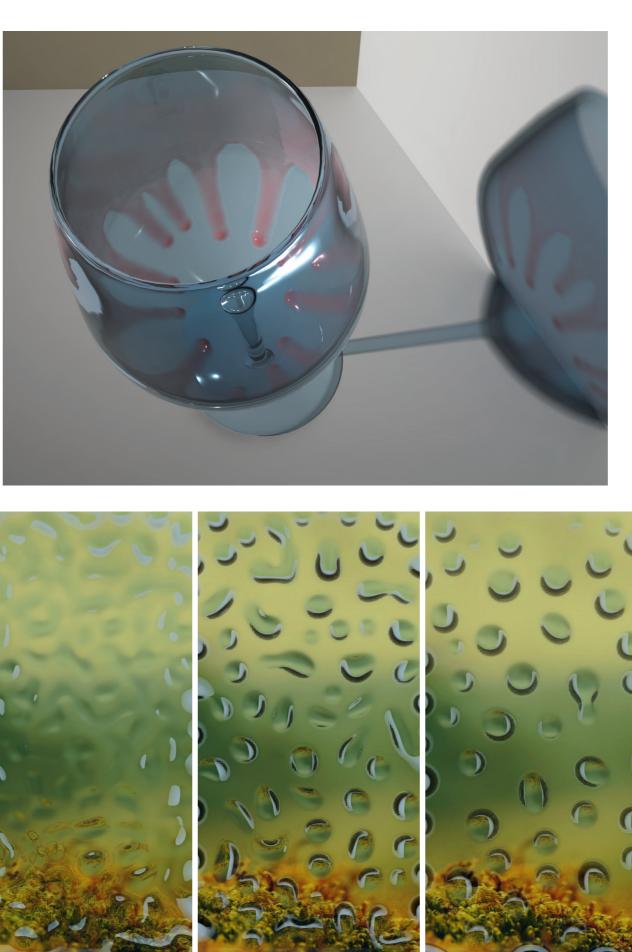
Properties:

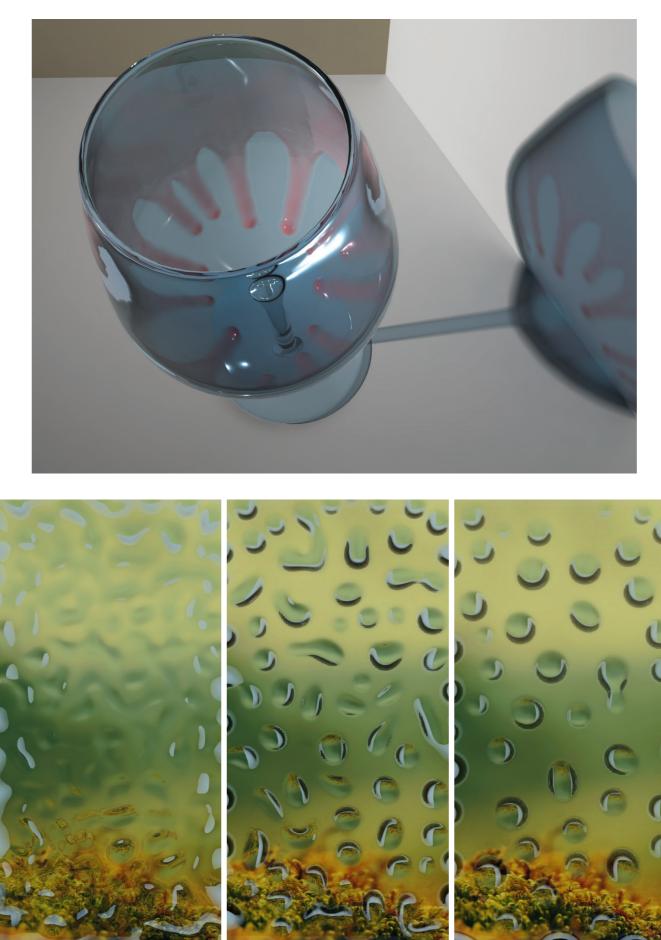
Mass is exactly preserved

Energy is non-increasing

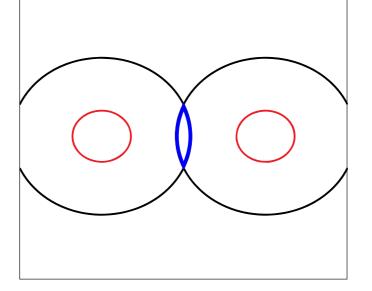
Results







Simulate singular waves



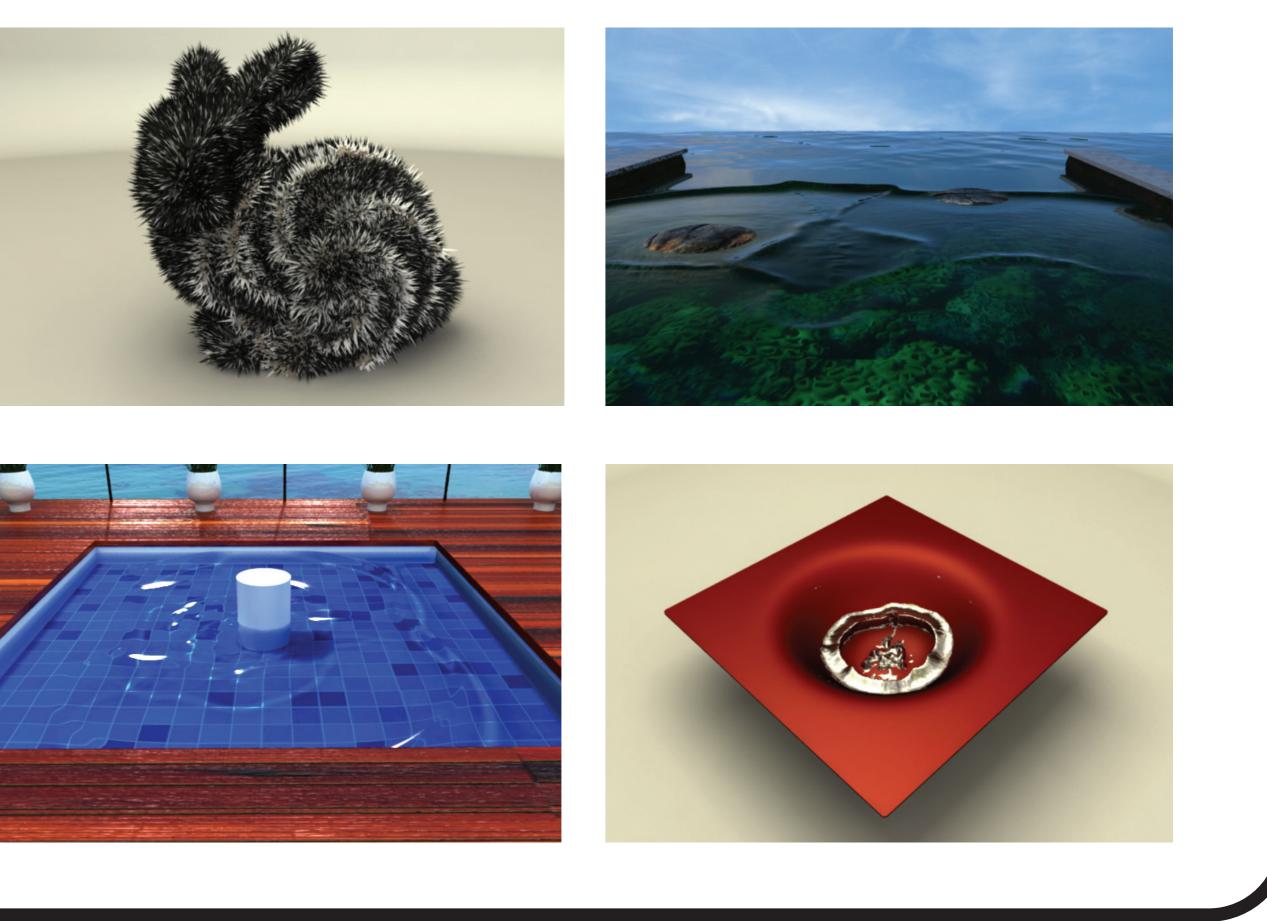
Solve their Euler–Poincaré formulation

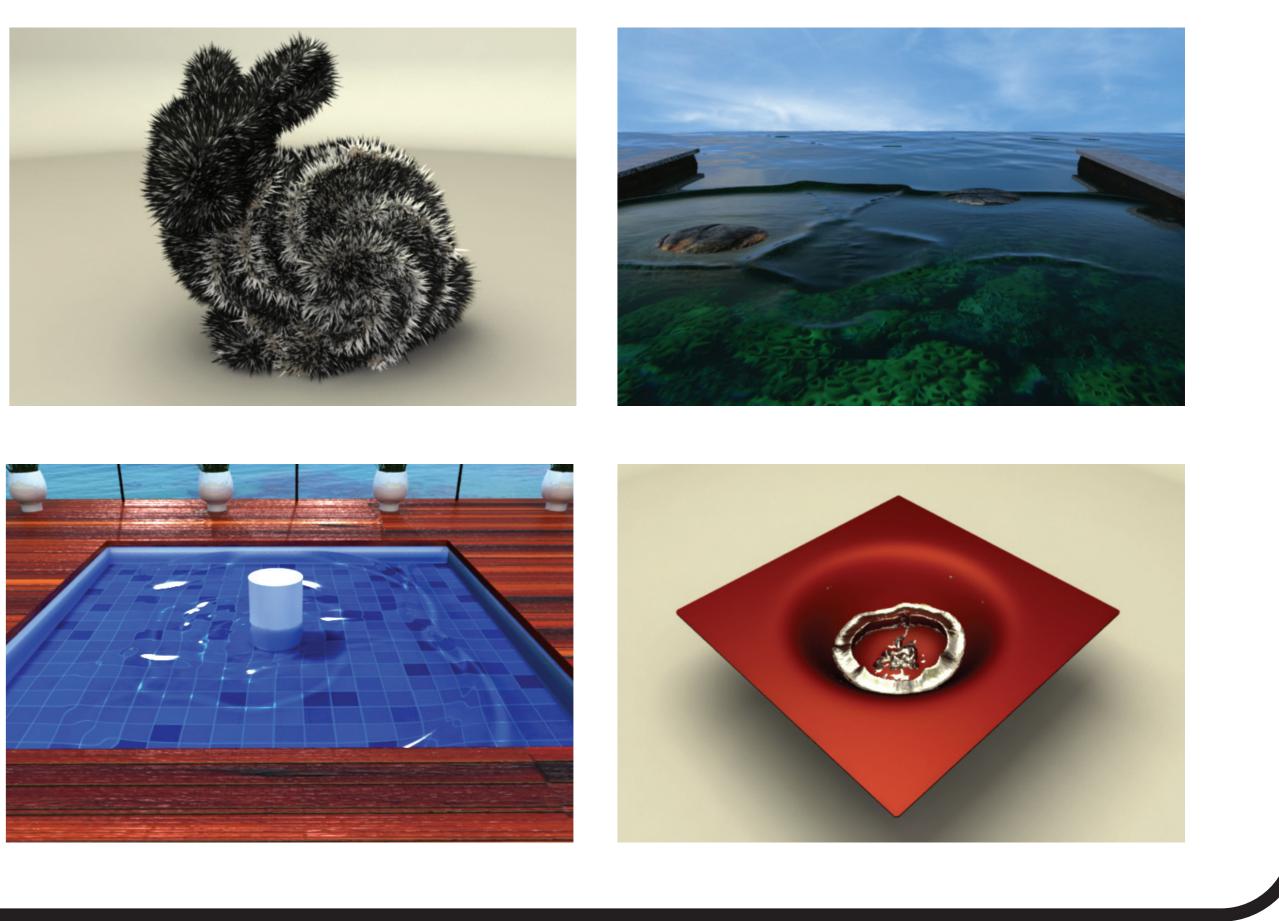
Our approach: á la leapfrog integration

 $(m_k, v_k) \mapsto h$

Properties:

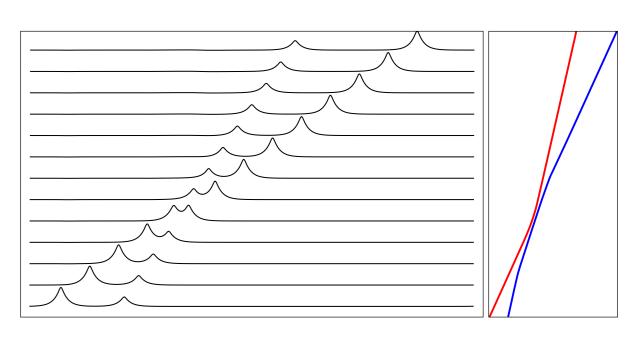
Results





This research was done in collaboration with Steffen Weissmann, Maks Ovsjanikov, Max Wardetzky, Martin Rumpf and Orestis Vantzos. This research was supported by the Marie Curie Career Integration Grant 334283-HRGP, the CNRS chaire d'excellence, a Google Faculty Research Award, the DFG Research Center Matheon, the SFB/Transregio 109 "Discretization in Geometry and Dynamics", ISF grant 699/12, Marie Curie CIG 303511, and the Hausdorff Center for Mathematics.

Co-funded by the European Union



 $\partial_t m = \operatorname{ad}_v^* m, \quad m = (I - \alpha^2 \Delta) v$

$$m_{k+\frac{1}{2}} \mapsto (m_{k+1}, v_{k+1})$$

 $(m_k, v_k) \mapsto \overline{v}_{k+\frac{1}{2}} \mapsto (\overline{m}_{k+1}, \overline{v}_{k+1})$

Energy is exactly preserved

Momentum-Velocity relation is maintained

