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2. Vector Fields as Operators

Lemma 2.1 Let V a vector field on M and let T}, t € R be
the functional representations of the diffeomorphisms @, :
M — M of the one parameter group associated to the flow of
V.If D is a linear partial differential operator then Dy oD =
DoDy if and only if forany t € R, Tf oD = Do Tf.

Proof Let p € M and f € C°°(M) be a smooth function. If
V(p) = 0, then @}, (p) = p and Dy (f)(p) = 0. It immedi-
ately follows that Dy o D(f)(p) = Do Dy (f)(p) if and only
if TE o D(f)(p) = Do Tf(f)(p) because the right hand side
of both equation is equal to 0.

Now assume that V(p) # 0. There exists (see, e.g. [Spi99]
Theorem 7, p.148) a local coordinate system in an open
neighborhood of p such that V = % and D can be written

as
D= Z aq(x,y)0*
0<|a|<n

Lo s .. A lof
where o0 = (i, j) is a multi-index , |of| =i+ j and 3% = ai,-;x,.

First assume that T o D = D o Tf. Since the deriva-
tive (with respect to ¢) of fo®i (p) at t = 0 is equal
to Dy (f)(p), the differentiation with respect to ¢ of the
equality D(f)(®}(p)) = D(f o ®|,(p)) gives at t = 0:
Dy (D(f))(p) = D(Dy (f))(p). As this holds for any f and
p, we deduce that Dy oD = Do Dy.

Assume now that Dy o D = Do Dy. As in the proof of
Lemma 2.4, since the flow of V is a one parameter group
we just need to prove that Tj o D = D o T}. for t contained in
an arbitrarily small interval containing 0 but not reduced to
0. Using the product rule we have

aaa aaf

0=DyoD(f)-D(DDy(f)) = x Il
0<la()|<n OX O¥'OX

Since this equality holds for any f we deduce that for any o,
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aai;’ = 0. As a consequence, the coefficients ag of D are con-

stant along the trajectories of V in the local coordinate sys-
tem and thus for |t| small enough we obtain Tj- o D(f)(p) =

DoTi(f)(p). O

Lemma 2.2 A vector field V is a Killing vector field if and
only if Dy oL = Lo Dy.

Proof As L is a differential operator, it follows from Lemma
2.1 that Dy oL = Lo Dy if and only if 75 oL = Lo Tf. Re-
calling that the Laplace-Beltrami operator is invariant under
the action of isometries of M, we immediately deduce that
if V is a Killing vector field then Dy o L = Lo Dy. Now,
if Tf. o L = Lo T}, then the Laplace-Beltrami operator L is
preserved by the action of the diffeomorphims ®/,. Since L
determines the metric on M, |, have to be isometries. [

Lemma 2.3 Given two vector fields Dy, and Dy, that both
commute with some operator D, the Lie derivative Ly, (V2)
will also commute with D.

Proof Using that DDy, = Dy, D and DDy, = Dy,D we im-

mediately obtain
D(Dy,Dy, — Dy,Dy,) = DDy, Dy, — DDy, Dy,

Dy, Dy,D — Dy,Dy,D

(DV1DV2 — Dy, Dy, )D'

|
Lemma 2.4 Dy, = (Tp)~! oDy, oTF.

Proof Given p € M, by definition of the push forward we
have V5 (T (p)) = dT (Vi(p)) where dT denotes the differen-
tial of the diffeomorphism 7. Now if f € C°°(N) is a smooth
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function, then using the chain rule we get

Dy, oTr(f)(p) =Dy, (foT)(p) = d(foT)(Vi(p))
df(dT(Vi(p)))
df(Va(T(p)))
Dy, (f)(T(p))
= TroDy,(f)(p)

As T is a diffeomorphism, 7r is an isomorphism and we
obtain Dy, = (TF)_l oDy, oTr. [J

Lemma 2.5 Assume that the manifold M and the vector field
V are real analytic. Let T* = @/, be self-map associated with
the flow of V at time ¢. Then if T} is the functional represen-
tation of T, for any real analytic function f:

Trf =exp(tDy)f = Z ’DV) Ubv)' S

Proof The set of diffeomorphisms associated to the flow of
V is a one parameter group: for 7,5 € R, ®{* = @}, o P},
(see [Spi99], Theorem 6, p.147). The right hand side of the
equality of the Lemma also having the same property, it suf-
ficies to show it for ¢ contained in any arbitrarily small in-
terval containing O but not reduced to 0. Given p € M, if
V(p) = 0, then for any k, (Dy)*(f)(p) = 0 and both hand
sides of the equality are equal to f(p). Now assume that
V(p) # 0. There exists (see, e.g. [Spi99] Theorem 7, p.148)
an analytic local coordinate system in an open neighborhod
of p in which V is equal to a .As a consequence without

loss of generality we can assume that V = ax and p =0, and
prove the equality in this coordinate system. As the flow of
% is just a translation, the left hand side of the equality be-
comes Trf(0) = f(¢). As D (f) = %, the right hand side
0x
is just the Taylor expansion of f at O in the direction of x:
00 lk ak f
L i1k

Since f is an analytic function, for |¢| small enough, this
Taylor expansion is equal to f(z). [

4. Discretization
4.1. Derivation of the discrete operator

To compute the entries in the matrix S, we need to compute
integrals of the form df; = [, vi (VY;,Vr)du, where t is a
triangle, y; is the hat basis function of the vertex i, and V; is
a constant vector in #,. These integrals are non zero only if
both i and j are vertices of ¢, and their value is given by the
following Lemma.

Lemma 4.0 Let M = (X, F,N) and let V be a piecewise con-
stant vector field on M. In addition, let#, = (i, j, k) € F be a
triangle and V; be the value of V on #,. Then:

1 T
dlrj:/tr'Yl<v’Yj7Vr>d;u:8<ej;7Vr>7 .

i j

where e is the edge of 7 opposite to vertex j rotated by
/2, such that it points outside the triangle (see the inset
figure for the notations).

Proof The gradient of a basis hat function is given by (see
eg. [?]): Vy; = ejL,/(ZAr), where Ay is the area of the tri-
angle #,. This value is constant in #,, as is V;, and therefore
we have:

1
d; =/tr’Yi<V'Yj,Vr>dy= ler<efr,v,>/try,-d,1.

The integral of a basis hat function on the whole triangle is
exactly the volume of a pyramid with basis 7, and height 1.
Hence, [, Yidu = A;/3. Plugging this in dj; we get:

1
dlr] = 6 <€j;,vr> .
Note, that this expression holds also when j =i. []

Now, computing the values of S;; and §;; is simply a matter
of identifying on which set of triangles d is not zero.

For §;;, these are only the two triangles #1,, neighboring the
edge (i, j). Hence we have:

5= 4 ((ehn)+ (ch ).

-

where the notations are given in the inset figure.

For §;;, the relevant triangles are the faces #, which are near
the vertex i (denoted by Nr (i)), hence we have:

Sii = é Y (ervi).

1 ENp <l>

Finally, we would like to show that S;; = — Y j S;j. From the
definition of §;; we have that:

;Si/:é Yy << ,1,V1>+<e,*2.,v2>).

JEN(i)

By re-arranging the sum as a sum on the neighboring faces,

we get:
(fh)+ ()

1

YSi=¢ X
J r=(ij,k)ENr (i)

It is easy to check that for a triangle » = (i, j, k) we have:

ejr+ep = (pi—pr) +(pj — pi) = Pj — Pk = —¢irs
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and hence:

1
IUETEED)
J r=(i,j,k) ENF (i)

_e#>vr>> = —Sii.

4.2. Proofs

Lemma 4.1 Let M = (X,F,N) and let V,V; be two piece-
wise constant vector fields on M. Then: Df, = Df, if and
only if V| =

Proof We will show that given a tangent vector field V, and a
corresponding operator 15‘1;, we can reconstruct V uniquely
from 155 . Since ﬁ{; is defined locally per face, where V is
smooth, the uniqueness is in fact implied by the uniqueness
property in the smooth case. However, for completeness we
will validate this explicitly, by providing a reconstruction
method that extracts V given LA){; .

Given a face r = (i, j, k) we compute ¢; = (D}, (y;)), and sim-
ilarly for ¢, ¢k, where v; is the hat basis function of vertex i.
Now, we consider the set of constraints we have on V.. First,
by definition we have that (D% (v,))r = (V;,Vy) = ¢;. In ad-
dition, V; should be tangent to the triangle, hence (V,,N,) =
0, where N, is the normal. This yields the following linear
system for V;:

(VYI)Z Ci
(ij)rT Vv, = ¢j
(VYi)r Ck

NF 0

However, since s = ; +7; + Y = 1, we have that DE(s) =
¢i+cj+c =0, and similarly Vy; + Vy; + VY = 0. There-
fore, one of the equations is redundant. Furthermore, V; is
in the direction of the edge (j,k) rotated by /2, and simi-
larly for V; and they are both orthogonal to N;,. Therefore,
if the triangle is not degenerate, VY;, Vy;, Ny are linearly in-
dependent, and the system is full rank. Since we know that
Dﬁ was constructed from V, the system has a unique solu-
tion given by V,. [J

Lemma 4.2 Let M| = (X],F,N]) and My = (XQ,F,NQ) be
two triangle meshes with the same connectivity but different
metric (i.e. different embedding). Additionally, let V| be a
piecewise constant vector field on My, then:

AF _ AF
Dy, = Dy,.
Here (V5), = A(V})r, where A is the linear transformation

that takes the triangle r in M, to the corresponding triangle
in M;. Note that lA)Vl. is computed using the embedding X;.

Proof By definition we have that
X R (pi.— p})
(DV,)ri = ((V¥)1, (Vi)r) = <2kA1J7(V1)r ;

where the face r = (i, j, k), pl-1 are the coordinates in X; of
vertex i and R% is counter-clockwise rotation by /2 in the
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plane of the triangle r. On the other hand we have

X RO(p2 _ 2
(D) = (V). (V2)r) = <(§j‘42”’) (Vz)r>

R®A(p - ph)
= <2|14‘/41,A(V1)r 9

where |A| is the determinant of A. It is easy to check directly,
that for any A we have that: AT (R°)7A = |A|(R*®)T, which
implies D\? = ﬁa, asrequired. [

Lemma 4.3 Let M = (X,F,N), V a piecewise constant vec-
tor field on M, f =Y ; fiy; a PL function on M, and w; the
Voronoi area weights, then:

1X| 1|

Z wi(Dy f); = Z wi(div(V));fi.
i=1 i=1
where:

(div(V)),-:% Y (V).

Wi 1 ENg (i)

Proof From the definition of Dy, we have that

1| Y 1| IX] 1|

Y wiDvs)i=Y WDy f) = Z Sfi=Y Z Sijfj-
i=i ‘

i=1 i=1j=
Switching the roles of the indices i, j, we get:

1X] x| 1| 1|

Z ZSjl.fl = Zgifi» 8i = Zsﬁ'
i=1 j=1

i=1j=

The only non-zero entries in the i-th column of S are on the
diagonal and entries S; such that j is a neighbor of i. Thus
we have:

gi=Si+ Y, Sj
JEN()
P]ugging in the definition of §j; and S;; we get:
iy T () B () ()
1 ENF (i)

Again, we can re-arrange the second sum as a sum on neigh-
boring faces and get:

bel T (a)ed T (e ()

€N (i) 1 €NE (i)
1 .
=3 <e#,Vr> = w;(div(V));.
t,ENp (i)
Finally, we get:
x| 1| IX|

; wi(Dv f)i = ;gi.fi = ;Wi(diV(V))iﬁ,

as required. [
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