An Operator Approach to Tangent Vector Fields Processing Supplemental Material

Omri Azencot¹ and Mirela Ben-Chen¹ and Frédéric Chazal² and Maks Ovsjanikov³

¹Technion - Israel Institute of Technology ² Geometrica, INRIA ³LIX, École Polytechnique

2. Vector Fields as Operators

Lemma 2.1 Let V a vector field on M and let T_F^t , $t \in \mathbb{R}$ be the functional representations of the diffeomorphisms Φ_V^t : $M \to M$ of the one parameter group associated to the flow of V. If D is a linear partial differential operator then $D_V \circ D = D \circ D_V$ if and only if for any $t \in \mathbb{R}$, $T_F^t \circ D = D \circ T_F^t$.

Proof Let $p \in M$ and $f \in C^{\infty}(M)$ be a smooth function. If V(p) = 0, then $\Phi_V^t(p) = p$ and $D_V(f)(p) = 0$. It immediately follows that $D_V \circ D(f)(p) = D \circ D_V(f)(p)$ if and only if $T_F^t \circ D(f)(p) = D \circ T_F^t(f)(p)$ because the right hand side of both equation is equal to 0.

Now assume that $V(p) \neq 0$. There exists (see, e.g. [Spi99] Theorem 7, p.148) a local coordinate system in an open neighborhood of p such that $V = \frac{\partial}{\partial x}$ and D can be written as

$$D = \sum_{0 < |\alpha| \le n} a_{\alpha}(x, y) \partial^{\alpha}$$

where $\alpha=(i,j)$ is a multi-index , $|\alpha|=i+j$ and $\partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^i\partial x^j}$.

First assume that $T_F^t \circ D = D \circ T_F^t$. Since the derivative (with respect to t) of $f \circ \Phi_V^t(p)$ at t=0 is equal to $D_V(f)(p)$, the differentiation with respect to t of the equality $D(f)(\Phi_V^t(p)) = D(f \circ \Phi_V^t(p))$ gives at t=0: $D_V(D(f))(p) = D(D_V(f))(p)$. As this holds for any f and p, we deduce that $D_V \circ D = D \circ D_V$.

Assume now that $D_V \circ D = D \circ D_V$. As in the proof of Lemma 2.4, since the flow of V is a one parameter group we just need to prove that $T_F^t \circ D = D \circ T_F^t$ for t contained in an arbitrarily small interval containing 0 but not reduced to 0. Using the product rule we have

$$0 = D_V \circ D(f) - D(D_V(f)) = \sum_{0 < |\alpha = (i,j)| \le n} \frac{\partial a_\alpha}{\partial x} \frac{\partial^\alpha f}{\partial x^i \partial x^j}.$$

Since this equality holds for any f we deduce that for any α ,

 $\frac{\partial a_{\alpha}}{\partial x} = 0$. As a consequence, the coefficients a_{α} of D are constant along the trajectories of V in the local coordinate system and thus for |t| small enough we obtain $T_F^t \circ D(f)(p) = D \circ T_F^t(f)(p)$. \square

Lemma 2.2 A vector field V is a Killing vector field if and only if $D_V \circ L = L \circ D_V$.

Proof As L is a differential operator, it follows from Lemma 2.1 that $D_V \circ L = L \circ D_V$ if and only if $T_F^t \circ L = L \circ T_F^t$. Recalling that the Laplace-Beltrami operator is invariant under the action of isometries of M, we immediately deduce that if V is a Killing vector field then $D_V \circ L = L \circ D_V$. Now, if $T_F^t \circ L = L \circ T_F^t$, then the Laplace-Beltrami operator L is preserved by the action of the diffeomorphims Φ_V^t . Since L determines the metric on M, Φ_V^t have to be isometries. \square

Lemma 2.3 Given two vector fields D_{V_1} and D_{V_2} that both commute with some operator D, the Lie derivative $\mathcal{L}_{V_1}(V_2)$ will also commute with D.

Proof Using that $DD_{V_1} = D_{V_1}D$ and $DD_{V_2} = D_{V_2}D$ we immediately obtain

$$D(D_{V_1}D_{V_2} - D_{V_2}D_{V_1}) = DD_{V_1}D_{V_2} - DD_{V_2}D_{V_1}$$

$$= D_{V_1}D_{V_2}D - D_{V_2}D_{V_1}D$$

$$= (D_{V_1}D_{V_2} - D_{V_2}D_{V_1})D.$$

Lemma 2.4 $D_{V_2} = (T_F)^{-1} \circ D_{V_1} \circ T_F$.

Proof Given $p \in M$, by definition of the push forward we have $V_2(T(p)) = dT(V_1(p))$ where dT denotes the differential of the diffeomorphism T. Now if $f \in C^{\infty}(N)$ is a smooth

function, then using the chain rule we get

$$\begin{aligned} D_{V_1} \circ T_F(f)(p) &= D_{V_1}(f \circ T)(p) &= d(f \circ T)(V_1(p)) \\ &= df(dT(V_1(p))) \\ &= df(V_2(T(p))) \\ &= D_{V_2}(f)(T(p)) \\ &= T_F \circ D_{V_2}(f)(p) \end{aligned}$$

As T is a diffeomorphism, T_F is an isomorphism and we obtain $D_{V_2}=(T_F)^{-1}\circ D_{V_1}\circ T_F$. \square

Lemma 2.5 Assume that the manifold M and the vector field V are real analytic. Let $T^t = \Phi^t_V$ be self-map associated with the flow of V at time t. Then if T^t_F is the functional representation of T^t , for any real analytic function f:

$$T_F^t f = \exp(t D_V) f = \sum_{k=0}^{\infty} \frac{(tD_V)^k f}{k!}.$$

Proof The set of diffeomorphisms associated to the flow of V is a one parameter group: for $t,s\in\mathbb{R}$, $\Phi_V^{t+s}=\Phi_V^t\circ\Phi_S^v$ (see [Spi99], Theorem 6, p.147). The right hand side of the equality of the Lemma also having the same property, it sufficies to show it for t contained in any arbitrarily small interval containing 0 but not reduced to 0. Given $p\in M$, if V(p)=0, then for any k, $(D_V)^k(f)(p)=0$ and both hand sides of the equality are equal to f(p). Now assume that $V(p)\neq 0$. There exists (see, e.g. [Spi99] Theorem 7, p.148) an analytic local coordinate system in an open neighborhod of p in which V is equal to $\frac{\partial}{\partial x}$. As a consequence without loss of generality we can assume that $V=\frac{\partial}{\partial x}$ and p=0, and prove the equality in this coordinate system. As the flow of $\frac{\partial}{\partial x}$ is just a translation, the left hand side of the equality becomes $T_F f(0) = f(t)$. As $D_{\frac{\partial}{\partial x}}(f) = \frac{\partial f}{\partial x}$, the right hand side is just the Taylor expansion of f at 0 in the direction of x:

$$\sum_{k=0}^{\infty} \frac{t^k}{k!} \frac{\partial^k f}{\partial x^k}(0).$$

Since f is an analytic function, for |t| small enough, this Taylor expansion is equal to f(t). \square

4. Discretization

4.1. Derivation of the discrete operator

To compute the entries in the matrix S, we need to compute integrals of the form $d_{ij}^r = \int_{t_r} \gamma_i \langle \nabla \gamma_j, V_r \rangle d\mu$, where t_r is a triangle, γ_i is the hat basis function of the vertex i, and V_r is a constant vector in t_r . These integrals are non zero only if both i and j are vertices of t_r , and their value is given by the following Lemma.

Lemma 4.0 Let M = (X, F, N) and let V be a piecewise constant vector field on M. In addition, let $t_r = (i, j, k) \in F$ be a triangle and V_r be the value of V on t_r . Then:

$$d_{ij}^r = \int_{t_r} \gamma_i \left\langle
abla \gamma_j, V_r \right
angle d\mu = rac{1}{6} \left\langle e_{jr}^{\perp}, V_r
ight
angle, \qquad \stackrel{e_{jr}^{\perp}}{}_{i}$$

where e_{jr}^{\perp} is the edge of t_r opposite to vertex j rotated by $\pi/2$, such that it points outside the triangle (see the inset figure for the notations).

Proof The gradient of a basis hat function is given by (see e.g. [?]): $\nabla \gamma_j = e_{jr}^{\perp}/(2\mathcal{A}_r)$, where \mathcal{A}_r is the area of the triangle t_r . This value is constant in t_r , as is V_r , and therefore we have:

$$d_{ij}^{r} = \int_{L} \gamma_{i} \langle \nabla \gamma_{j}, V_{r} \rangle d\mu = \frac{1}{2 \mathcal{A}_{r}} \left\langle e_{jr}^{\perp}, V_{r} \right\rangle \int_{L} \gamma_{i} d\mu.$$

The integral of a basis hat function on the whole triangle is exactly the volume of a pyramid with basis t_r and height 1. Hence, $\int_{t_r} \gamma_i d\mu = \mathcal{A}_r/3$. Plugging this in d_{ij}^r we get:

$$d_{ij}^r = \frac{1}{6} \left\langle e_{jr}^{\perp}, V_r \right\rangle.$$

Note, that this expression holds also when j = i.

Now, computing the values of S_{ij} and S_{ii} is simply a matter of identifying on which set of triangles d_{ij}^r is not zero.

For S_{ij} , these are only the two triangles t_1, t_2 neighboring the edge (i, j). Hence we have:

$$S_{ij} = rac{1}{6} \left(\left\langle e_{j1}^{\perp}, V_1 \right\rangle + \left\langle e_{j2}^{\perp}, V_2 \right\rangle \right),$$
 e_{j1}^{\perp} V_1 e_{j2}^{\perp} V_2

where the notations are given in the inset figure.

For S_{ii} , the relevant triangles are the faces t_r which are near the vertex i (denoted by $N_F(i)$), hence we have:

$$S_{ii} = \frac{1}{6} \sum_{t_r \in N_F(i)} \left\langle e_{ir}^{\perp}, V_r \right\rangle.$$

Finally, we would like to show that $S_{ii} = -\sum_{j} S_{ij}$. From the definition of S_{ij} we have that:

$$\sum_{j} S_{ij} = \frac{1}{6} \sum_{j \in N(i)} \left(\left\langle e_{j1}^{\perp}, V_{1} \right\rangle + \left\langle e_{j2}^{\perp}, V_{2} \right\rangle \right).$$

By re-arranging the sum as a sum on the neighboring faces, we get:

$$\sum_{j} S_{ij} = \frac{1}{6} \sum_{r=(i,j,k) \in N_F(i)} \left(\left\langle e_{jr}^{\perp}, V_r \right\rangle + \left\langle e_{kr}^{\perp}, V_r \right\rangle \right).$$

It is easy to check that for a triangle r = (i, j, k) we have:

$$e_{jr} + e_{kr} = (p_i - p_k) + (p_j - p_i) = p_j - p_k = -e_{ir},$$

and hence

$$\sum_{j} S_{ij} = \frac{1}{6} \sum_{r=(i,j,k) \in N_F(i)} \left(\left\langle -e_{ir}^{\perp}, V_r \right\rangle \right) = -S_{ii}.$$

4.2. Proofs

Lemma 4.1 Let M = (X, F, N) and let V_1, V_2 be two piecewise constant vector fields on M. Then: $\hat{D}_{V_1}^F = \hat{D}_{V_2}^F$ if and only if $V_1 = V_2$.

Proof We will show that given a tangent vector field V, and a corresponding operator \hat{D}_V^F , we can reconstruct V uniquely from \hat{D}_V^F . Since \hat{D}_V^F is defined locally per face, where V is smooth, the uniqueness is in fact implied by the uniqueness property in the smooth case. However, for completeness we will validate this explicitly, by providing a reconstruction method that extracts V given \hat{D}_V^F .

Given a face r = (i, j, k) we compute $c_i = (\hat{D}_V^F(\gamma_i))_r$ and similarly for c_j, c_k , where γ_i is the hat basis function of vertex i. Now, we consider the set of constraints we have on V_r . First, by definition we have that $(\hat{D}_V^F(\gamma_i))_r = \langle \nabla \gamma_i, V_r \rangle = c_i$. In addition, V_r should be tangent to the triangle, hence $\langle V_r, N_r \rangle = 0$, where N_r is the normal. This yields the following linear system for V_r :

$$\begin{pmatrix} (\nabla \gamma_i)_r^T \\ (\nabla \gamma_j)_r^T \\ (\nabla \gamma_k)_r^T \\ N_r^T \end{pmatrix} V_r = \begin{pmatrix} c_i \\ c_j \\ c_k \\ 0 \end{pmatrix}$$

However, since $s = \gamma_i + \gamma_j + \gamma_k = 1$, we have that $\hat{D}_V^F(s) = c_i + c_j + c_k = 0$, and similarly $\nabla \gamma_i + \nabla \gamma_j + \nabla \gamma_k = 0$. Therefore, one of the equations is redundant. Furthermore, $\nabla \gamma_i$ is in the direction of the edge (j,k) rotated by $\pi/2$, and similarly for $\nabla \gamma_j$ and they are both orthogonal to N_r . Therefore, if the triangle is not degenerate, $\nabla \gamma_i, \nabla \gamma_j, N_r$ are linearly independent, and the system is full rank. Since we know that \hat{D}_V^F was constructed from V, the system has a unique solution given by V_r . \square

Lemma 4.2 Let $M_1 = (X_1, F, N_1)$ and $M_2 = (X_2, F, N_2)$ be two triangle meshes with the same connectivity but different metric (i.e. different embedding). Additionally, let V_1 be a piecewise constant vector field on M_1 , then:

$$\hat{D}_{V_1}^F = \hat{D}_{V_2}^F$$
.

Here $(V_2)_r = A(V_1)_r$, where A is the linear transformation that takes the triangle r in M_1 to the corresponding triangle in M_2 . Note that \hat{D}_{V_i} is computed using the embedding X_i .

Proof By definition we have that

$$(\hat{D}_{V_1}^F)_{ri} = \langle (\nabla \gamma_i)_1, (V_1)_r \rangle = \left\langle \frac{R^{90}(p_k^1 - p_j^1)}{2\mathcal{A}_1}, (V_1)_r \right\rangle,$$

where the face r = (i, j, k), p_i^1 are the coordinates in X_1 of vertex i and R^{90} is counter-clockwise rotation by $\pi/2$ in the

plane of the triangle r. On the other hand we have

$$\begin{split} (\hat{D}_{V_2}^F)_{ri} &= \langle (\nabla \gamma_i)_2, (V_2)_r \rangle = \left\langle \frac{R^{90}(p_k^2 - p_j^2)}{2\mathcal{A}_2}, (V_2)_r \right\rangle \\ &= \left\langle \frac{R^{90}A(p_k^1 - p_j^1)}{2|A|\mathcal{A}_1}, A(V_1)_r \right\rangle, \end{split}$$

where |A| is the determinant of A. It is easy to check directly, that for any A we have that: $A^T(R^{90})^TA = |A|(R^{90})^T$, which implies $\hat{D}_{V_1}^F = \hat{D}_{V_2}^F$, as required. \square

Lemma 4.3 Let M = (X, F, N), V a piecewise constant vector field on M, $f = \sum_i f_i \gamma_i$ a PL function on M, and w_i the Voronoi area weights, then:

$$\sum_{i=1}^{|X|} w_i (\hat{D}_V f)_i = \sum_{i=1}^{|X|} w_i (\operatorname{div}(V))_i f_i.$$

where:

$$(\operatorname{div}(V))_i = \frac{1}{2w_i} \sum_{t_r \in N_F(i)} \left\langle V_r, e_{ir}^{\perp} \right\rangle.$$

Proof From the definition of \hat{D}_V , we have that

$$\sum_{i=1}^{|X|} w_i(\hat{D}_V f)_i = \sum_{i=1}^{|X|} (W\hat{D}_V f)_i = \sum_{i=1}^{|X|} (Sf)_i = \sum_{i=1}^{|X|} \sum_{i=1}^{|X|} S_{ij} f_j.$$

Switching the roles of the indices i, j, we get:

$$\sum_{i=1}^{|X|} \sum_{i=1}^{|X|} S_{ji} f_i = \sum_{i=1}^{|X|} g_i f_i, \quad g_i = \sum_{i=1}^{|X|} S_{ji}.$$

The only non-zero entries in the *i*-th column of S are on the diagonal and entries S_{ji} such that j is a neighbor of i. Thus we have:

$$g_i = S_{ii} + \sum_{j \in N(i)} S_{ji}.$$

Plugging in the definition of S_{ii} and S_{ii} we get:

$$g_i = \frac{1}{6} \sum_{t_r \in N_F(i)} \left\langle e_{ir}^{\perp}, V_r \right\rangle + \frac{1}{6} \sum_{j \in N(i)} \left(\left\langle e_{i1}^{\perp}, V_1 \right\rangle + \left\langle e_{i2}^{\perp}, V_2 \right\rangle \right).$$

Again, we can re-arrange the second sum as a sum on neighboring faces and get:

$$g_{i} = \frac{1}{6} \sum_{t_{r} \in N_{F}(i)} \left\langle e_{ir}^{\perp}, V_{r} \right\rangle + \frac{1}{6} \sum_{t_{r} \in N_{F}(i)} \left(\left\langle e_{ir}^{\perp}, V_{r} \right\rangle + \left\langle e_{ir}^{\perp}, V_{r} \right\rangle \right)$$
$$= \frac{1}{2} \sum_{t_{r} \in N_{F}(i)} \left\langle e_{ir}^{\perp}, V_{r} \right\rangle = w_{i}(\operatorname{div}(V))_{i}.$$

Finally, we get

$$\sum_{i=1}^{|X|} w_i(\hat{D}_V f)_i = \sum_{i=1}^{|X|} g_i f_i = \sum_{i=1}^{|X|} w_i(\operatorname{div}(V))_i f_i,$$

as required.

 $4\ O.\ Azencot\ \&\ M.\ Ben-Chen\ \&\ F.\ Chazal\ \&\ M.\ Ovsjanikov/An\ Operator\ Approach\ to\ Tangent\ Vector\ Fields\ Processing\ Supplemental\ Material$

References

[Spi99] Spivak M.: A comprehensive introduction to differential geometry. Vol. I, third ed. Publish or Perish Inc., 1999.