
Functional Thin Films on Surfaces

Omri Azencot1 Orestis Vantzos2 Max Wardetzky3 Martin Rumpf2 Mirela Ben-Chen1

1Technion – Israel Institute of Technology 2University of Bonn 3University of Göttingen

Figure 1: Various effects of liquid thin film flow achievable with our method.

Abstract

The motion of a thin viscous film of fluid on a curved surface ex-
hibits many intricate visual phenomena, which are challenging to
simulate using existing techniques. A possible alternative is to use
a reduced model, involving only the temporal evolution of the mass
density of the film on the surface. However, in this model, the mo-
tion is governed by a fourth-order nonlinear PDE, which involves
geometric quantities such as the curvature of the underlying sur-
face, and is therefore difficult to discretize. Inspired by a recent
variational formulation for this problem on smooth surfaces, we
present a corresponding model for triangle meshes. We provide a
discretization for the curvature and advection operators which leads
to an efficient and stable numerical scheme, requires a single sparse
linear solve per time step, and exactly preserves the total volume
of the fluid. We validate our method by qualitatively comparing
to known results from the literature, and demonstrate various intri-
cate effects achievable by our method, such as droplet formation,
evaporation, droplets interaction and viscous fingering.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling
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1 Introduction

The intricate motion of a viscous thin film subject to external forces,
such as gravity, inspires research in physics, mathematics and com-
puter science, among other scientific disciplines. In many scenarios
the domain on which the fluid resides is curved rather than flat. The
tear film on the cornea of the eye [Braun et al. 2012], the dynam-
ics of lava flows [Griffiths 2000] and the formation of ice on the
aerofoil of an aircraft [Myers and Charpin 2004], are all examples

related to the evolution of thin films on curved geometries. The goal
of this paper is to suggest a method for simulating thin films on sur-
faces, which is based on gradient flow evolution and the operator
view of the flow induced by tangent vector fields.

Generally, the Navier–Stokes equations coupled with appropriate
boundary conditions are assumed to give a good approximation of
the film’s dynamics. However, for the flows we are interested in,
these equations are considered difficult to solve numerically, espe-
cially on curved domains. Moreover, in the case of thin films we
can assume an extremely small height-to-length ratio which leads
to a substantial simplification through the lubrication approxima-
tion [Reynolds 1886]. Namely, under the assumptions of the lubri-
cation model, the evolution of the film’s mass density is governed
by a fourth-order nonlinear partial differential equation (PDE).

A natural approach to simulate thin films within this reduced model
would then be to discretize the resulting PDE (e.g., [Roy et al.
2002]). Choosing such a strategy, however, one will be faced with
two main challenges. First, one will need to derive a suitable set
of discrete differential operators acting on discrete curved domains
(e.g., triangle meshes). Then, the second task will be to construct
a proper numerical time integration scheme. While any attempt to
discretize general PDEs will encounter these obstacles, in the par-
ticular case of thin films, the restriction on the time step size (see
e.g., [Greer et al. 2006]) makes the usage of explicit schemes im-
practical. Although it is possible to use implicit schemes instead,
such schemes do not guarantee in general the preservation of the un-
derlying structure. For example, conserved quantities in the contin-
uous setting (such as the total volume of the thin film) may become
non-conserved in a discrete framework. Due to the above obstacles,
direct discretization of the PDE is usually considered less attractive.

An alternative point of view is to leverage the gradient flow struc-
ture which is known to exist for thin film equations (see e.g., [Gia-
comelli and Otto 2003; Rumpf and Vantzos 2013]). In this model,
the motion of the film is determined by the minimizer of a certain
cost function, which is defined over the manifold of all possible
densities of the film with prescribed volume. Intuitively, the cost
function is minimized when the resistance of the fluid to flow due to
dissipation induced by friction balances the additional forces (e.g.,
surface tension and gravity) that act on the film. One of the advan-
tages of this approach is that every gradient flow has a natural time
discretization which leads to a variational problem. In practice, it
allows for significantly larger time steps compared to explicit nu-



merical schemes. Furthermore, by construction, the associated en-
ergy is guaranteed to decrease at each step.

However, we still need to address the issues of modeling the un-
derlying mass transport and the conservation of fluid volume. A
reasonable choice within the gradient flow model is to minimize
the cost function under an additional constraint given by the trans-
port equation. Intuitively, the transport equation describes how the
mass density is affected by the motion of the fluid through the cor-
responding velocity field. Recently, [Azencot et al. 2013] suggested
a coordinate-free approach for solving the transport equation on tri-
angulated surfaces by representing tangent vector fields as linear
operators on scalar functions. Their method is advantageous since
it avoids the complicated integration of the fluid’s motion, while
ensuring the preservation of the integral of the transported quantity.

In this work, we argue that the gradient flow model combined with
the operator view of tangent vector fields leads to a robust and
highly efficient simulation tool. Specifically, we consider the thin
film model of [Rumpf and Vantzos 2013] in the presence of a pre-
cursor layer (i.e., the film resides on top of a very thin layer defined
over the whole domain) and in the geometric setting of triangulated
surfaces. Under the assumption that we are given an approximate
normal field, we present formulations of discrete curvature oper-
ators which are tailored for our model. In addition, we employ
insights from [Azencot et al. 2013] to advect the mass function of
the thin film in a manner which causes very little numerical dissi-
pation, and is guaranteed to conserve exactly the total volume of
the fluid. The resulting method boils down to a linear solve of a
sparse system per time step. We demonstrate the effects of curva-
ture, gravity (see e.g., Fig. 2) and material parameters on the flow,
and qualitatively compare our results to previous numerical simu-
lations. Finally, we present various effects (e.g., droplet formation
and interaction) which are achievable within our framework.

1.1 Related Work

As the behaviour of viscous thin films on surfaces has not, to the
best of our knowledge, been previously simulated in the graphics
community, we focus our attention on Eulerian methods from the
computational fluid dynamics community, and to work on similar
phenomena which appeared in the computer graphics literature.

The evolution of thin films over arbitrary domains has been an ac-
tive area of research in CFD for many decades. We refer the in-
terested reader to the seminal review by [Oron et al. 1997] and to
the more recent review by [Craster and Matar 2009]. These reviews
present a continuous model for thin films, based on lubrication the-
ory, which defines a reduced model for the 3D Navier–Stokes equa-
tions given the assumption of a small thickness of the film.

One approach to thin film simulation is to directly discretize the
governing PDE as was shown for planar (see e.g., [Zhornitskaya
and Bertozzi 1999; Grün and Rumpf 2000]) and curved (see
e.g., [Roy et al. 2002]) domains. In general, this point of view leads
to several challenges, of which the restriction on the time step size
for explicit schemes is perhaps the most problematic. Namely, the
application of a CFL-type condition leads to the requirement that
the time step τ is on the order of (δx)4, where δx is the minimal
edge length. To overcome this constraint, [Greer et al. 2006] em-
ployed convexity splitting for their time integration scheme (within
a level-set framework). Nevertheless, their scheme does not guar-
antee conservation of the fluid’s volume, and has additional restric-
tions due to the level-set formulation.

An alternative discretization for thin films can be derived from the
gradient flow model, for which a natural variational time integrator
exists. In general, variational integrators are known to conserve the

underlying structure, e.g., the variational scheme in [Mullen et al.
2009] preserves a notion of discrete momentum. For the case of
thin films over curved domains (see e.g., [Vantzos 2014; Rumpf
and Vantzos 2013]), the gradient flow approach leads to an attrac-
tive numerical scheme. In the latter work, which is closest to our
approach, the authors used Discrete Exterior Calculus (DEC) [Hi-
rani 2003] for the spatial discretization, representing the flux field
with discrete 1-forms. Our approach differs from their work as we
use a velocity based formulation, leverage [Azencot et al. 2013]
for the advection, and suggest discrete curvature operators. These
changes allow us to generate stable simulations on arbitrary trian-
gle meshes which are common in graphics. A detailed comparison
with [Rumpf and Vantzos 2013] is given in Sections 3 and 4.

We conclude with some representative related work from the graph-
ics community literature. Free surface flows for highly viscous flu-
ids were suggested in [Carlson et al. 2002], where effects such as
melting wax are demonstrated. While one could consider adding a
surface as a solid boundary and using a similar approach for sim-
ulating viscous films, it would be quite difficult to achieve the in-
tricate effects we show without using a very dense grid resolution.
More recently, various methods were proposed for modeling thin
features in free surface flows by explicitly tracking the free surface
mesh [Wojtan et al. 2011; Zhang et al. 2012], by using thickened
triangle meshes [Batty et al. 2012], tetrahedral elements [Clausen
et al. 2013], or simplicial complexes [Zhu et al. 2014], to mention
just a few. Such approaches, however, require careful manipula-
tion of the connectivity and topology of the free surface geometry,
which are avoidable when simulating films on surfaces, as the free
surface can be represented as a scalar function.

Finally, some approaches simulate water related phenomena. Wang
et al. [2005] model the contact angle with the surface, representing
the free surface with a level-set based distance field. While vari-
ous effects are achievable with this approach, the method requires
a high-resolution grid which leads to a time-consuming system re-
quiring a few days of computation per simulation. On the other
hand, using a height field based method as in [Wang et al. 2007]
considerably reduces computational complexity, however, the in-
stabilities and effects we demonstrate below were not shown there.

Figure 2: Vanilla sauce on a chocolate bunny. The physical pa-
rameters are b = 20, ε = 0.1, β = 0.



1.2 Contributions

Our main contributions can be described as follows:

• A discrete model for thin film evolution on general triangle
meshes.

• An efficient and robust scheme, which exactly preserves the
total fluid’s volume.

• Simulation of various intricate effects, such as fingering,
evaporation and droplet formation and interaction.

2 Dynamics of thin films

We investigate the evolution of a layer of an incompressible viscous
fluid flowing with velocity v on top of a curved surface Γ, under
the influence of surface tension and, potentially, gravity. The liquid
layer is attached to the surface at the liquid-solid interface, i.e., no-
slip boundary condition (we extend this later), whereas the liquid-
air surface is evolving freely. A typical scenario is illustrated in
Figure 3 showing the notation for various related quantities.

Navier–Stokes equations. A common approach for modeling
the evolution of thin liquid films is to consider the Navier–Stokes
equations. These equations describe the fluid’s velocity in the liq-
uid phase (the bulk), the surface tension on the liquid-air interface
(i.e., the free surface), and a suitable boundary condition for the
velocity in the liquid-solid interface (i.e., on the solid surface). For-
mally, the fluid velocity v and the pressure p satisfy the equations:

∂tv + (v · ∇)v − µ∆v +∇p = 0 in the bulk
div v = 0 in the bulk

v = 0 on the surface
σn − γHn = 0 at the free surface

(1)

where σ = −p id +µ(∇v + ∇vT ) is the stress tensor, µ and γ
are the viscosity and the capillary constants. Furthermore, the free
surface itself evolves according to the kinematic condition ∂tx = v .

Unfortunately, a straightforward discretization of these equations is
challenging. In particular, to achieve the type of effects we show
below, the main obstacle is due to the prohibitively small time steps
which are imposed by such a method. Moreover, the spatial dis-
cretization is also challenging since Eulerian methods will require
dense sampling of the domain, whereas Lagrangian techniques will
involve complex tracking of the free surface. Therefore, direct dis-
cretization of equations (1) is not practical for graphics applications
for this type of problems.
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Figure 3: A typical scenario is illustrated for the full 3D Navier–
Stokes (left) compared to the reduced lubrication model (right). No-
tice that under the lubrication assumptions the involved quantities
are computed directly on Γ, e.g., u is a scalar function.
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Figure 4: By visualizing the pressure we can identify regions where
the fluid is likely to accumulate. For example, for an initially uni-
form layer of fluid, the initial pressure p0 indicates that fluid is ex-
pected to concentrate at the respective centers, where the pressure
is lowest. See Fig. 5 for the temporal evolution of the flow.

Lubrication approximation. Since we are interested in thin
films, a reduction in dimensionality can be achieved by using the
lubrication approximation model (see e.g., [Oron et al. 1997]). In
this model, the dynamics of the film are governed by the evolution
of a function (i.e., a scalar quantity) defined on the surface Γ.

Given a characteristic scaling of height and length, the key assump-
tion to consider is a small height to length ratio, i.e., ε = height

length
�

1. Then, one takes into account an asymptotic expansion of the
Navier–Stokes equations with respect to ε, where the resulting thin
film equations are composed of the leading order terms. Taking
this path, a derivation of a lubrication model without gravity for
the mass density u on curved domains yields equations of the form
(see [Roy et al. 2002] and [Rumpf and Vantzos 2013]):

∂tu = divΓ (M(u)∇Γp) (2a)

M(u) =
1

3
u3 id +

ε

6
u4(H id−S) (2b)

p = −H − εTu− ε∆Γu (2c)

where M(u) is the mobility tensor (to be discussed later) and p can
be considered as a pressure-like quantity on the surface, i.e., the
fluid moves away from areas of high p. H and K are the mean and
Gaussian curvatures, T = H2 − 2K, and S is the shape operator.

Notice that inertia effects are neglected in this model, i.e., the
Reynolds number is assumed to be small, Re � 1, as expected
(by simple scaling arguments) for a thin enough film. Moreover,
we assume that the mass density u is a proper function. As u is
closely related to the fluid’s height h, that is u = h − ε

2
Hh2, the

consequence of the former constraint is that the free surface is as-
sumed to be representable as a height function over Γ, and hence,
e.g., contact angles higher than π/2 and wave-like structures cannot
be modeled with equations (2).

In addition to providing a reduced model for the Navier–Stokes
equations, the thin films equations are also instrumental for analyz-
ing the behavior of the flow. As mentioned above, the fluid flows
towards low pressure areas thus visualizing p allows to evaluate the
underlying dynamics of the film. Moreover, a qualitative study of
the expected flow can be done by estimating the different scales of
the various components in p. For instance, the dominating term in
Eq. (2c) is the mean curvature and hence the dynamics on curved
domains are expected to be completely different when compared to
the flat case (where H = 0). Indeed, we demonstrate this and other
effects in the following example.

In Figure 4 we show the color coding of the pressure computed
for an initial uniform deposition of liquid on a bumpy plane (left)
and on the Scherk surface (right). These figures suggest that the
fluid is most likely to accumulate at the center of the respective



surfaces, where the pressure is low. Indeed, we show in Figure 5
(top) the color coding of the evolution of the mass density u on the
bumpy plane, starting from a uniform layer of fluid. In this case,
since the dominating term is H (top, left), the film flows towards
the maximal mean curvature, at the center of the basin. Similarly,
for a minimal surface, namely when H = 0, the terms that govern
the dynamics are the Gaussian curvature and the Laplacian of u.
In Figure 5 (bottom), we show frames of the flow on the Scherk
minimal surface, starting again from a uniform layer of fluid. Here,
the initial Laplacian of u is 0 thus the minimal Gaussian curvature
(bottom, left) drives the fluid towards the center of the surface.

Unfortunately, the simulation of thin film flow based on a PDE of
the form (2) suffers from serious drawbacks. First, explicit dis-
cretization of equation (2) requires very strong time step restric-
tions, and stable (semi-)implicit discretizations allowing for large
time steps, are unknown. Second, qualitative properties, such as
volume preservation and energy decay, are difficult to ensure. Fi-
nally, on general triangulated surfaces it is unclear how to discretize
the geometric quantities in a physically consistent way.

These issues motivate a different approach—instead of directly dis-
cretizing the PDE, it is possible to model the evolution from the
variational perspective of gradient flows, as was first suggested
in [Rumpf and Vantzos 2013]. To introduce the concepts to the
graphics community, and to keep the paper self contained, in the
next section we first briefly describe the gradient flow model of thin
films, and then discuss our modifications.

3 Gradient flow model

Background. The key insight behind the variational ap-
proach is that the quantity p can be viewed as the negative
(Frechet) derivative of the free energy functional Eε(u) =∫

Γ

{
−Hu− ε

2
Tu2 +

ε

2
|∇Γu|2

}
dx so that the PDE (2) is of

the gradient flow form ∂tu = −G( δE
ε(u)
δu

). The evolution of
u then can be understood as a “steepest” descent for the free en-
ergy Eε, at a rate regulated by the mobility M(u) via the function
G(φ) = divΓ (M(u)∇Γφ). The previous statement can be made
precise by introducing the flux f = −M(u)∇Γp, so that the PDE
can be written in the form of a flow equation as

∂tu = − divΓ f. (3)

Then the gradient flow is equivalent to the statement that the free
energy decays as d

dt
Eε(u) = −Dεu(f, f) ≤ 0, where the bilinear

form Dεu(f, f) =

∫
Γ

f ·M(u)−1f dx is known as the (viscous)

dissipation. This in turn is equivalent to the variational requirement
that the density variation ∂tu and the flux f minimize (at each time
t) the so-called Rayleigh functional 1

2
Dεu(f, f) + δEε(u)

δu
(∂tu) un-

der the transport constraint (3).

Intuitively, the energy is an approximation of the area of the free
surface, which should be minimized due to surface tension, and the
dissipation is the “price to pay” for the total shear stress due to the
flow inside the film. Hence, among all the possible flows which
preserve the mass of the fluid, we look for the one which optimally
minimizes the area of the free surface and the stress inside the film.

Finally, following the idea of natural time discretization of gradient
flows [Otto 2001] and minimizing movements [Giorgi and Ambro-
sio 2006], we integrate in time to arrive at a variational approxima-
tion of uk+1 = u(tk + τ) given uk = u(tk):

uk+1 = argmin
u=Fτ (uk,f)

{
1

2τ
Dεu(f, f) + Eε(u)

}
(4)

t=0H t=0.27 t=2.34

t=0 t=3534t=281K

Figure 5: (top) The motion of the film primarily depends on the
mean curvature thus the fluid concentrates in the center basin, u0 =
0.1, ε = 0.1. (bottom) For minimal surfaces (i.e., when H = 0) the
film is mostly influenced by the Gaussian curvature as shown for
the Scherk’s surface, u0 = 0.1, ε = 1.

whereFτ (uk, f) denotes a suitable (approximate) solution at tk+τ
of the initial value transport problem (3) with u(tk) = uk. The con-
strained minimization problem (4) is equivalent to discretizing the
original PDE (2) in time; instead of the PDE then, one can describe
(and discretize) the thin film flow through the three components of
the gradient flow: the free energy Eε, the dissipationD and the flow
equation (3) (or in the time-discrete setting the flow operator Fτ ).

This approach, as shown in [Rumpf and Vantzos 2013], addresses
some of the shortcomings of PDE-based solvers pointed out previ-
ously. Speficially, discrete qualitative properties are straightforward
to preserve: the energy decay is built into the time discretization
(4), as will be shown later, and it is also easier to set up discrete
mass conservation for the flow equation than for the full PDE (2).
In addition, because of the explicit control on the energy decay, the
variational scheme is very stable, allowing for large time steps.

In [Rumpf and Vantzos 2013], suitable energy and dissipation func-
tionals are derived for gravity- and surface tension-driven thin film
flow on a smooth curved surface. The variational time discretiza-
tion (4) is coupled then with a spatial discretization based on Dis-
crete Exterior Calculus, resulting in a fully discrete scheme on tri-
angulated surfaces that has the positive properties mentioned above.
Unfortunately, directly applying that scheme for graphics purposes
on general triangle meshes is challenging. Next we describe our
modifications to the aforementioned scheme which lead to stable
simulations on general triangle meshes, and compare our results.

Transport constraint. The transport constraint is difficult to dis-
cretize while ensuring discrete mass preservation. One way to
achieve this (as was done in [Rumpf and Vantzos 2013]), is to work
with a flux-based formulation, that lends itself naturally to a finite-
volume approach such as Discrete Exterior Calculus. However, in
the presence of obtuse triangles, i.e., triangles with angles larger
than π/2, negative entries can arise in the diagonal matrices that
the scheme uses to define inner products between discrete k-forms.
This can lead to non-convexity and eventually to instability and/or
non-convergence of the variational scheme. Notice that for general
meshes, eliminating these obtuse triangles is highly non-trivial.

Recently, a new discretization for the transport equation was sug-
gested in [Azencot et al. 2013], which uses a velocity-based rep-
resentation, and does not suffer from the aforementioned problem.
We therefore switch to a velocity-based representation, resulting in
the transport equation ∂tu+divΓ(uv) = 0, discretized in a similar
spirit to [Azencot et al. 2013] (as described in Section 4).

We compared our scheme to the method of [Rumpf and Vantzos
2013] on the bunny model which has obtuse triangles. Specifically,
we computed the difference in energy and the minimal u in the first
iteration for different time step sizes. In Figure 6 (left) we show
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Figure 6: Comparison with [Rumpf and Vantzos 2013]. (left) The
present scheme consistently decreases the energy, i.e., δ(E) ≤ 0
(even for meshes with obtuse triangles), whereas the other method
is non-converging—it increases the energy for decreasing time step
size, contrary to the desired behavior. (right) Here the present
method preserves the initial value of uwhile the other method yields
negative values.

that our method is consistently decreasing the energy, whereas the
method of [Rumpf and Vantzos 2013] actually increases the energy
for small time steps. In addition, we show in Figure 6 (right) that
their method yields negative values for u even for very small time
steps, whereas ours preserves the initial value of the precursor layer.

Approximate normal fields. As we have previously seen in Fig-
ure 5, the film dynamics are heavily dependent on the curvature
operators, H , K and S. In their work [Rumpf and Vantzos 2013]
presented one dimensional applications and simulations on two di-
mensional surfaces where the curvatures are easy to compute ana-
lytically (such as surfaces of revolution and graphs). One could, of
course, extend their method to triangulated surfaces by choosing a
set of discrete curvature operators from the many available in the
literature (see e.g., [Gatzke and Grimm 2006]). We chose instead
to go back to fluid mechanics and look for a definition of the energy
and dissipation functionals that could be applied on continuous but
non-smooth surfaces, such as a triangulated mesh.

Our main observation is that if Γ is equipped with a continuous
vector field n that is approximately1 normal, one can follow similar
derivations as in [Rumpf and Vantzos 2013], and arrive at energy
and dissipation functionals given by (up to an O(ε2) error):

Eε(u) =

∫
Γ

(bz −H)u+
ε

2
(b cos θ − T )u2 +

ε

2
|∇Γu|2 da (5)

and

Dεu(v, v) =

∫
Γ

v ·M(u)−1v da (6)

M(u) =
(
β +

u

3

)
id +ε

u2

12

(
7H id−3S − 5S̄

)
(7)

respectively. In (5) we included the gravity terms that involve the
Bond number b, which measures the relative strength of gravity
vs. surface tension, the altitude z, and the angle θ of the surface
normal with the vertical direction. Moreover, we incorporated in (7)
a constant β which allows for various slip conditions.

Note that (unlike in [Rumpf and Vantzos 2013]) the curvature quan-
tities in these equations are now given in terms of the approximate
normal field n, as follows. The discrete shape operator S is defined,
per triangle, as the tangential gradient of n (albeit symmetrized and
projected to the tangent plane):

S := −1

2
P (∇Γn+ (∇Γn)T )P , (8)

1On a triangular mesh with face normals ν and average length edge δx,
we require that n · ν = O(δx) and that∇Γn be tangential and symmetric
up to order O(δx).

where P = id−ννT is the projection onto the tangent space.
From this shape operator we extract a discrete mean curva-
ture H = Tr(S) and a discrete Gaussian curvature K =
1
2

(
Tr(S)2 − Tr(S2)

)
. Surprisingly, these definitions are exactly

analogous to the continuous case. Finally, the rotated shape oper-
ator S̄ = −[ν]×S[ν]× is defined via the skew-symmetric matrix
[ν]×, where [ν]× · x = ν × x for any vector x.

In the case of triangular meshes, the thin film can be visualized as a

i
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Figure 7: Prismatic layer
of fluid over a triangle.

union of prism-like volumes,
each one attached to a triangle,
with sides parallel to the vector
field n (see Figure 7). The dis-
crete shape operator S captures
the shape of each prism, with
H and K describing whether the
sides of the prism converge or di-
verge away from its base. The
rotated shape operator S̄ on the
other hand is related to the effect
that crossing from one prism to
the other has on the fluid flow.

Together with the transport constraint

∂tu+ divΓ(uv) = 0 , (9)

the energy functional (5) and the dissipation functional (6) com-
pletely describe the gradient flow model on which our scheme is
based. In the next section we address the remaining required ingre-
dients, namely the discretizations of the function u, the vector field
v, the differential operators and the transport constraint.

4 Spatial discretization

The main challenge here is to define a stable discretization of the
transport equation (9) such that various properties (e.g., energy de-
cay and mass preservation) will hold on general triangle meshes.
While many of the operators we use are standard in geometry pro-
cessing, we highlight the properties these operators should possess
such that the resulting optimization scheme would indeed be stable.

Notation. We consider a triangle mesh and denote by V its vertex
set and by F its face set. We use bold faced symbols to denote the
spatial discrete analogues of continuous quantities (e.g., u is the
discrete mass density). When required, we use the subscripts V and
F to denote quantities on the vertices and the faces, respectively.
The bracket [·] operator is used to convert vectors in R|V| and R|F|

to block diagonal matrices in R|V|×|V| and R3|F|×3|F| respectively
(replicating each entry 3 times for the latter).

Functions, vector fields and inner products. We use a typical
setup, i.e., piecewise-linear functions and piecewise-constant vec-
tor fields, with corresponding inner products. Specifically, we rep-
resent real-valued functions as scalars on the vertices of the mesh,
i.e., u ∈ R|V|, and extend them to the whole mesh using piece-
wise linear hat basis functions. Similarly, vector fields are treated
as piecewise-constant on the faces of the mesh, i.e., v ∈ R3|F|.

For defining discrete inner products we require vertex and face ar-
eas, denoted by AV ∈ R|V| and AF ∈ R|F|, respectively. For the
vertex area we use 1/3 of the total area of its adjacent triangles, and
we define an interpolating matrix IFV ∈ R|V|×|F| which interpo-
lates quantities from faces to the vertices, i.e., IFV (i, j) = AF (j)

3AV (i)
,

iff vertex i belongs to face j and 0 otherwise. This choice implies
that AF = (IFV )TAV , which will be important for consistency



later. Now, discrete inner products are defined by:∫
Γ

u1u2da = uT1GVu2,

∫
Γ

〈v1, v2〉da = vT1GFv2,

where GV = [AV ] ∈ R|V|×|V| and GF = [AF ] ∈ R3|F|×3|F|

denote the diagonal mass matrix of the vertices and the faces.

Differential Operators. Equations (5) and (9) require discrete
gradient and divergence operators. In the smooth case, these opera-
tors fulfill integration by parts, namely on a surface without bound-
ary we have:

∫
Γ
〈v,∇Γu〉 da +

∫
Γ
u · divΓ v da = 0. In order to

maintain discrete preservation of mass (see appendix A), we need
the operators gradΓ ∈ R3|F|×|V| and divΓ ∈ R|V|×3|F| to fulfill
this discretely, namely:

vTGF (gradΓ u) + (divΓ v)TGVu = 0,

for arbitrary v and u. Interestingly, the standard operators (e.g., as
defined in [Botsch et al. 2010, Chapter 3]) fulfill this property.

Approximate normal field, curvature and gravity. As de-
scribed in the previous section, all of the required curvature quan-
tities can be computed once a suitable approximate normal field is
given. In practice, we use the area-weighted averages of triangle
normals [Botsch et al. 2010, pg. 42] as vertex normals. By apply-
ing the discrete gradient operator defined previously, the tangential
gradient of the discrete normal field per face j is:

(∇Γn)j =
1

2AF (j)

(
3∑
i=1

nji(J eji)
T

)

where the sum runs over the three vertex normals nji of the face
and J eji is the rotated (by π/2) edge opposite to vertex i in the
triangle j (see Figure 7). The gravity quantities can be computed
as follows: z is the vertical coordinate function and cosθ is the
vertical component function of n.

Mobility. The discrete mobilityM(u) is a 3|F|× 3|F| diagonal
matrix, where for each face the associated quantities can be com-
puted using Eq. (7), the curvature operators, and the interpolated
mass density uF on the faces (u is defined on vertices).

Transport operator. In the continuous case, equation (9) guaran-
tees that the integral of ∂tu vanishes on a closed surface (since the
divergence of any vector field integrates to 0). However, once we
discretize u and v then divΓ(uv) is no longer well defined using
our discrete operators, since uv is not a piecewise constant vector
field. To avoid this issue, we first apply the product rule to (9) and
reformulate the constraint as ∂tu = −(v · ∇Γu + udivΓ v). We
then follow [Azencot et al. 2013] and define a directional deriva-
tive D(v) such that 1TVGV (D(v) + [divΓ v])u = 0 for any
u and v (see the Appendix for the proof). Specifically, the di-
rectional derivative is given as D(v) ∈ R|V|×|V| by D(v) =

IFV [v]T• gradΓ, where [·]• ∈ R3|F|×|F| converts vector fields to
block diagonal matrices.

The main advantage of this point of view is that in the discrete
case the transport equation turns into a system of ODEs of the form
∂tu+Au = 0, for a constant matrixA, which can be solved using
a matrix exponential [Hochbruck and Ostermann 2010]. Thus, for
a velocity v constant in time, the discrete transport equation can be
solved in the time interval [tk, tk + τ ] to yield the solution

u = exp (−τD(v)− τ [divΓ v])uk (10)

Ours

[Rumpf and Vantzos 2013]

t=0 t=0.25 t=0.5

Figure 8: Starting from the same initial conditions and physical
parameters, our transport scheme (top) achieves a better resolved
finger compared to the result (bottom) generated with the more dif-
fusive scheme suggested in [Rumpf and Vantzos 2013].

at t = tk + τ , where τ is the time step. In the case of evaporation,
we have an additional term −τ [uk + ce]

−2 in the exponential.

The above transport mechanism is more appropriate to the flows
we are interested in than the one suggested by [Rumpf and Vantzos
2013]. In particular, droplet formation and fingering instabilities
are transport-dominated effects. Thus, a natural requirement from
a transport mechanism is to exhibit minimum diffusion, allowing
to capture better resolved fingers on relatively coarse meshes as we
demonstrate. We show in Figure 8 that starting from the same initial
conditions, our scheme is qualitatively less diffusive compared to
the method of [Rumpf and Vantzos 2013].

5 Fully discrete model

Given the above discrete operators and quantities, we can write the
fully-discrete optimization problem for computing u,v given uk:

min
u,v

{
1

2τ
Dεuk (v,v) + Eε(u)

}
,

subject to u = exp (−τD(v)− τ [divΓ v])uk.

(11)

Then, the fully-discrete energy and dissipation are given by:

Eε(u) = aTGVu+
ε

2
uT (GVB +L)u,

Dεuk (v,v) = vTGFM(uk)−1v,

where a = bz −H , B = bcosθ −H2 + 2K, and the stiffness
matrix L = −GV divΓ gradΓ.

5.1 Properties

Discrete energy. The discrete energy Eε(uk) is non increasing.

Proof: Noticing that u = uk and v = 0 is an admissible pair for
the minimization problem (11) since they satisfy the constraint, we
have immediately that:

1

2τ
Dεuk (vk+1,vk+1) + Eε(uk+1) ≤ 1

2τ
Dεuk (0, 0) + Eε(uk)

⇒ Eε(uk+1) ≤ Eε(uk)

since Dεuk (vk+1,vk+1) ≥ 0 and Dεuk (0, 0) = 0.



Intuitively, since D is non-negative, if the fluid moved and “paid”
with dissipation, then it found a smaller energy solution (otherwise
it will have remained at the previous state, with the same energy).

Discrete mass. The total discrete mass m(u) =
∫

Γ
u da =

1TVGVu is exactly preserved.

Proof: The transport equation (10) can be written as u =
exp(−τA)uk, where A = D(v) + [divΓ v]. In the ap-
pendix we show 1TVGVA = 0 for any velocity v. Hence,
we have m(uk) − m(u) = 1TVGV {id− exp(−τA)}uk =

1TVGV
{
τA− τ2

2
A2 + . . .

}
uk = 0.

5.2 Optimization

To solve the discrete variational model (11) we use the first order
approximation exp(−τA) ≈ id−τA of the matrix exponential,
so that the linear equation:

u = uk − τ(D(v) + [divΓ v])uk (12)

replaces the non-linear constraint (10). Hence, at every time step
we solve a quadratic problem with a linear constraint, which is
convex for a small enough τ (see §5.3 “Dynamic Time-stepping”).
As we will show next, this can be done very efficiently, by solving
a single linear system for u. Note that it is straightforward to check
that the results of §5.1 hold for the linearized constraint as well,
hence we gain efficiency yet do not lose stability.

The linear system. Using the method of Lagrange multipliers
we obtain the first order necessary conditions:

GFM(uk)−1v −
(
D(uk) + [uk]divΓ

)T
GVp = 0

GV (a+ εBu) + εLu−GVp = 0

GV
(
u− uk + τ(D(v) + [divΓ v])uk

)
= 0,

(13)

where p is the dual variable.

A key ingredient to deriving (13) is the dual operator D(u), de-
fined such that D(v)u = D(u)v, as it allows us to take deriva-
tives with respect to v. This operator is: D(u) = IFV [gradΓ u]T• .
Similarly, it holds that ([u]divΓ)v = [divΓ v]u.

Finally, eliminating v and p, we arrive at the following reduced
linear system for u:(
id +τεR(uk,uke)(GVB+L)

)
u = uke−τR(uk,uke)GVa (14)

where R(uk,uke) = F (uke)M(uk)G−1
F F (uke)T and F (uke) =

D(uke) + [uke ]divΓ and uke = exp(−τ [uk + ce]
−2)uk if evapo-

ration is included and uke = uk otherwise.

Thus, we obtain a fully discrete scheme where given an initial mass
density u0, we evolve it in time using the above update rule.

We implemented our method in MATLAB using standard linear
solvers for Eq. (14). In all our experiments, the method was very
stable allowing for large time steps (on the scale of O(ε + δx),
which is excellent for 4th order problems) depending on the initial
conditions and the underlying mesh. The experiments were per-
formed on an Intel(R) Xeon(R) processor with 32 GB RAM, and
we show in Table 1 the statistics for the different simulations.

Figure |V| Avg. per step #steps Total time
Fig. 2, Bunny* 38306 0.484 1999 967.8
Fig. 5, Bumpy plane 40401 0.683 4996 3410.4
Fig. 5, Scherk surface 40401 0.627 1997 1252.4
Fig. 10, Rounded cube* 19728 0.142 4991 709.5
Fig. 11, Sphere 40962 1.645 300 493.5
Fig. 13, Moomoo* 16710 0.080 1981 158.4
Fig. 14, Torus 40000 1.079 456 491.8
Fig. 16, Moai 89126 3.106 314 975.3
Fig. 15, Rain 10242 0.198 18001 3570.1
Fig. 17, Pensatore 27732 0.818 991 810.3
Fig. 18, Wine glass* 38976 0.708 496 351.1

Table 1: Timing statistics (in seconds). Asterisk denotes simula-
tions where an iterative solver was used, whereas for the rest, we
used a direct non-iterative solver.

5.3 Limitations

Dynamic Time-Stepping. Given that the stiffness matrix L is
positive semi-definite, the system (14) is invertible as long as
τ1 ε‖R(uk)‖2‖GF‖2B ≤ 1, whereB is the absolute taken on the
minimum value of B and it is a measure of how strongly negative
the quantity b cos θ − T is on the surface. Moreover, we employ
a CFL-type condition depending on the maximum velocity of the
film v, and grid size, i.e., we require that τ2v ≤ δx. Finally, we
take the time step to be τ = min{τ1, τ2}.

Positivity Preservation. Unfortunately, even if we start from
a strictly positive u0, the evolution of the film uk is
not guaranteed to stay positive [Rumpf and Vantzos 2013].

u k

v

Figure 9: Capillarity ridge with
high velocity and undershooting.

Aside from being non-
physical, in the case of
negative values, droplets
might rupture. In prac-
tice, all of our simulations
remain positive, excluding
the evaporation example.
Nevertheless, the evapora-
tion term has a stabiliz-
ing effect, indeed, neg-
ative mass concentrations
are also evaporated. Intuitively, positivity is difficult to maintain
due to the jump in pressure along the triple line (the interface where
air, solid and liquid meet). Moreover, the so-called capillary ridge
is formed, due to the competition between surface tension and other
forcing effects, e.g., gravity, see Figure 9 and 10. Thus, right where
the film is at its thinnest, the resulting velocity is high, implying
instability along the direction of motion. We leave further investi-
gation of the issue of positivity preservation for future work.

Figure 10: In the absence of gravity, the fluid departs areas where
the mean curvature is strongly negative and capillary ridges form.
Later, surface tension balances the fluid on top of every face,
cf. [Roy et al. 2002] (u0 = 0.1, b = 0, ε = 0.1, β = 0).

Meshes with creases. In general, the model we developed in
Section 3 has a strong dependency on the consistency of the ver-
tex normals. In practice, general meshes might have creases, or
small dihedral angles, which will cause H to be arbitrarily nega-



tively large and non-smooth. This can have a detrimental effect on
the simulation, as the fluid will be drawn towards these singular
locations. There are two possible remedies for this situation: we
can either refine the mesh (possibly non-uniformly), however that
would require additional pre-processing before one can apply our
scheme to an arbitrary model. Alternatively, we can add a regu-
larizer to the energy so that it is easier to control the simulation.
We opted for the second option, as it makes our method easier to
use, and can allow the artist some freedom to control the simulation
in a non-physical way. Hence, for meshes with creases (see e.g.,
Fig. 17), we multiply the stiffness matrix L defined in Section 5 by
a constant 1 ≤ r ≤ 100. This effectively adds some numerical
diffusion, allowing for more smooth solutions. Note that discrete
conservation of mass is not affected by this modification.

Detachment of fluid. As the fluid is “tied” to the surface,
droplets cannot detach when they become too large. In these cases,
the droplets grow narrower and taller until equilibrium is reached
and the approximate lubrication solution is stable, although the full
3D flow is not. Note, that in this case one could potentially switch to
a full 3D simulation, which will allow the droplet to separate from
the surface. This is an interesting direction for future research.

6 Experimental results

Parameter exploration. We begin by exploring the effect of var-
ious parameter choices on the simulation of the thin film. For this
example, we choose a sphere as a simple geometric model with
limited curvature effects on the flow. The basic experiment includes
placing a concentration of fluid at the top of the sphere, with slightly
perturbed initial conditions to avoid perfect symmetry. Due to grav-
ity the fluid flows downward, and the initial perturbations give rise
to fingering instabilities, (see [Takagi and Huppert 2010] for an ex-
perimental demonstration of fingering on a sphere). The result for
the parameters ε = 0.05, b = 50, β = 0 is shown in Figure 11 (f),
demonstrating the emergence of a secondary finger in the center
(see also Fig. 18, showing multiple fingers in a wine glass).

We refer to this setup as the reference configuration, and now mod-
ify in every column of the figure a single parameter to isolate its
effect on the simulation, for which we show a snapshot at time
t = 10. Left: varying b changes the speed with which the film
flows downward, without strongly affecting the shape of the fin-
gers. Specifically, for a lower b value (a), the secondary finger does
not emerge yet, whereas for a higher b value (b) it is more pro-

ε=0.05, b=30, β=0

ε=0.05, b=50, β=0ε=0.1, b=50, β=0

ε=0.05, b=50, β=0.05ε=0.005, b=50, β=0

ε=0.05, b=75, β=0

0.11

0.04

0

0.08a c e

d fb

Figure 11: Fingering behavior for varying parameters, at t = 10.
In every column, one parameter is modified from the reference con-
figuration (f). See the text for details.
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Figure 12: The energy E(u) for the simulations in Figure 11.

nounced than in the reference configuration. Middle: changing ε
affects the surface tension component, and therefore the shape of
the fingers. Reducing ε yields thinner fingers (c), whereas increas-
ing it (d) makes more viscous thick fingers, and eliminates the sec-
ondary finger. Right: increasing β considerably speeds up the fluid
(e), allowing it to flow more freely in all directions (as opposed to
increasing b which causes faster flow in the direction of gravity).

Energy reduction. The numerical scheme we use is guaranteed
by construction to reduce the energy E(u) at every time step. Fig-
ure 12 shows the energy decay in time, for the different simulations
in Figure 11. We observe that the slip parameter β affects the speed
with which the energy is reduced, the gravity parameter b also af-
fects the initial value of the energy, and the parameter ε has a minor
impact on the energy, as it is dominated by the leading order term.

Thin films interaction. Figure 13 demonstrates the flow and in-
teraction of thin films on the moomoo model. The higher bulk of
fluid accumulates beneath the horns of the model, followed by a
faster motion when it comes in contact with the lower bulk of fluid
(see also Figure 16). Then, the motion is mostly determined by the
two main fingers flowing on the sides of the model. In Fig. 15 we
show the interaction of many droplets viewed from four sides of
the unit sphere. We repeatedly pour new droplets at the top of the
sphere at a fixed rate and drain the liquid from the bottom.

Droplet formation. A thin film concentrating beneath a flat sur-
face develops an instability called droplet formation (cf. [Sharma
and Khanna 1998]). In Figure 14, we start with a uniform layer of

Figure 13: Flow on the moomoo model (b = 20, ε = 0.1, β =
0). Note how the upper and lower films interact: the larger mass
density of the upper film causes it to catch up with the lower front
leading to the formation of quickly propagating fingers.



Figure 14: Starting from a perturbed uniform layer of fluid, the
fluid flows downwards, accumulates and finally forms droplets.

fluid on the torus with small perturbations, and allow it to drop be-
neath the torus due to gravity. As the fluid accumulates around the
circular set of lowest points, droplets form.

Evaporation. Figure 16 shows how evaporation (ce = 0.01) and
the precursor layer affect the motion of the film. We deposit precur-
sor layers of different heights on the two halves of the Moai model
and place a similar bulk of fluid near the eyes. Due to the initially
thicker precursor layer, even though it evaporates quickly, the film
on the left part of the model flows to a greater distance compared to
the film on the right. Eventually, all the film evaporates.

7 Conclusion

We presented a novel method for simulating viscous thin film flow
on triangulated meshes. Our approach is based on a variational time
discretization and is therefore stable and allows for large time steps.
Furthermore, we guarantee by construction that the discrete total
mass is preserved and that the discrete energy is non-increasing.
The algorithm is based on a single sparse linear solve per iteration,
and is therefore very efficient. We demonstrated various intricate
film motions, such as viscous fingering and droplet interaction.

There are many potential extensions to our model. First, we can
add non-linear energy terms to model additional effects and to avoid
negative solutions. Furthermore, it might be possible to extend the
model to handle effects due to surface tension gradient. Finally, our
discretization of the mass transport constraint might be potentially
useful in additional applications.

p
p/2

p/2

Figure 15: Rain of droplets lead to their interesting interaction
over the sphere (see the video for the full simulation). The sphere is
shown from its four sides, where the axis of rotation is shown above.

Figure 16: Evaporation effect on the evolution of the film.

A Discrete conservation of mass
To prove that the discrete massm(u) = 1TVGVu, with 1V a vector
of ones of length |V|, is strictly preserved, we recall the first or-
der necessary conditions (13). For the linearized transport equation
u = uk−τ (D(v) + [divΓ v])uk, we multiply the third equation
by 1TV and, using the duality ofD andD, the discrete product rule,
and the fact that AF = (IFV )TAV and [x]•yF = [yF ]x for any
vector field x and face function yF , we obtain:

m(uk+1)−m(uk) = −τ 1TVGV (D(v) + [divΓ v])uk

= −τ 1TVGV
(
D(uk) + [uk]divΓ

)
v

= −τ vT
(
D(uk) + [uk]divΓ

)T
GV1V

= −τ vT
(

[gradΓ u
k]•(I

F
V )TGV1V + divΓ

T [uk]GV1V
)

= −τ vT
(

[(IFV )TGV1V ]gradΓ u
k+divΓ

T GV [uk]1V
)

= −τ vT
(

[AF ]gradΓ u
k −GF gradΓ[uk]1V

)
= −τ vTGF

(
gradΓ u

k − gradΓ u
k
)

= 0 .
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