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Vector fields on surfaces are fundamental in various applications in com-
puter graphics and geometry processing. In many cases, in addition to rep-
resenting vector fields, the need arises to compute their derivatives, for ex-
ample for solving partial differential equations on surfaces, or for designing
vector fields with prescribed smoothness properties. In this work, we con-
sider the problem of computing the Levi-Civita covariant derivative, i.e.,
the tangential component of the standard directional derivative, on triangle
meshes. This problem is challenging since formally, tangent vector fields
on polygonal meshes are often viewed as being discontinuous, and hence
it is not obvious what a good derivative formulation would be. We lever-
age the relationship between the Levi-Civita covariant derivative of a vector
field and the directional derivative of its component functions to provide a
simple, easy-to-implement discretization for which we demonstrate experi-
mental convergence. In addition, we introduce two linear operators, which
provide access to additional constructs in Riemannian geometry that are
not easy to discretize otherwise, including the parallel transport operator,
which can be seen simply as a certain matrix exponential. Finally, we show
the applicability of our operator to various tasks, such as fluid simulation
on curved surfaces, and vector field design by posing algebraic constraints
on the covariant derivative operator.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

Additional Key Words and Phrases: Geometry processing, discrete differ-
ential geometry, vector field analysis.
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1. INTRODUCTION

Tangent vector fields are ubiquitous in computer graphics. From
fluid simulation to texture synthesis, the need to represent vecto-
rial data arises in many applications. Often, it is necessary to com-
pute the covariant derivative of a tangent vector field in an arbi-
trary tangent direction. For example, when simulating fluid flow
using Euler equations, the covariant derivative of the fluid’s veloc-
ity is the main ingredient in the computation of the time evolu-
tion of the flow [Taylor 1996]. Furthermore, some vector fields are
characterized by the properties of their derivatives: smooth vector
fields [Knöppel et al. 2013] minimize the Dirichlet energy, while
Geodesic vector fields [Pottmann et al. 2010] are constant length
and have symmetric covariant derivative operators. Although spe-
cific solutions have been tailored to various applications, there cur-
rently exists little work on discrete representations of derivatives of
tangent vector fields on polygonal meshes, which are applicable to
general scenarios.

There are two main challenges in deriving such a discretization.
First, even on smooth surfaces, defining derivatives of tangent vec-
tor fields is more involved than defining derivatives of functions.
Specifically, comparing the values of a function at two points on the
surface is trivial, but it is not obvious how given two tangent vectors
at different points one can determine if they are “the same”, since
tangent vectors at different points are expressed with respect to dif-
ferent reference frames. Hence, one needs a way to transport vec-
tors across tangent planes, a construct encoded by a notion of par-
allel transport. Unfortunately most theoretical treatments of these
topics make heavy use of local coordinates, which makes defining
discrete analogues for polygonal meshes difficult.

The second challenge is due to the nature of discrete surfaces,
namely polygonal meshes, and the way tangent vector fields are
represented. The simplest representation, which is the one we opt
for, is piecewise constant vectors on the faces of the mesh. How-
ever, in such a representation vector fields are discontinuous across
edges, which a priori can lead to difficulties in computing their
derivatives. In this paper, we formalize this intuition by showing
that for this choice of vector field representation, there exists no
definition of a discrete vector field derivative which satisfies all
the properties of the continuous Levi-Civita covariant derivative ex-
actly. Faced with these challenges, we propose a novel approach to
discretize the Levi-Civita covariant derivative. We compute the di-
rectional derivatives of the vector field’s component functions and
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take the tangential part of the resulting vector field. In the contin-
uous case, it is well-known that such a definition yields the unique
Levi-Civita covariant derivative [Morita 2001, p. 181]. While being
intuitive and easy to implement, our approach offers several con-
ceptual benefits. First, by working with functions instead of vector
fields, we overcome the difficulty of comparing vectors in different
tangent planes. Second, by projecting the component functions on
a multi-scale basis, we impose some smoothness on the underly-
ing vector field, which allows us to obtain a stable discretization of
the Levi-Civita covariant derivative for which we demonstrate ex-
perimental convergence. Finally, we derive a representation of the
covariant derivative as an operator acting on vector fields. This al-
lows us to design vector fields with various properties, and to define
parallel transport without resorting to the computation of discrete
flow lines, simply as a matrix exponential.

1.1 Related Work

Unlike the discretization of the directional derivatives of functions,
which can be reduced to computing gradients and is thus well-
established (e.g., [Botsch et al. 2010; Azencot et al. 2013]), there
exists, to the best of our knowledge, no unified treatment of co-
variant derivatives of vector fields on meshes. Some derived quan-
tities such as the divergence and the curl have received wide at-
tention [Polthier and Preuss 2003; Wardetzky 2006; Hirani 2003;
Meyer et al. 2002], whereas the general case we are interested in—
the Levi-Civita covariant derivative of a tangent vector field, has
not been discretized directly. As a full review of the use of deriva-
tives of vector fields in applications is beyond our scope, we men-
tion a few representative examples.

Discrete calculus frameworks. There exist several frame-
works for geometry processing and graphics applications that pro-
vide discretizations of differential quantities. Discrete exterior cal-
culus (DEC) [Hirani 2003] is one of the most extensive and widely
used, and provides discrete equivalents for vector field operators
such as curl, divergence, gradient and Hodge Laplacian. In addi-
tion, DEC provides a strong theoretical foundation in the discrete
setting with theorems which mimic the corresponding statements
for smooth surfaces. However, not all operators are supported in
DEC, and specifically there is currently no consistent discretiza-
tion of the covariant derivative of vector fields. Other frameworks,
such as surface Finite Element Methods (FEM) [Dziuk and Elliott
2013], and Finite Element Exterior Calculus [Arnold et al. 2006]
have also been proposed, but their focus has traditionally been on
solving boundary value problems for differential equations. While
these approaches have been successfully used to discretize differ-
ential operators including the Laplace–Beltrami operator [Wardet-
zky 2006; Dziuk and Elliott 2013], discretizing arbitrary differen-
tial quantities on unstructured meshes remains challenging.

Another approach is to use a global conformal parameterization
to the plane [Lui et al. 2005] together with standard FEM to solve
a modified problem which takes into account the distortion intro-
duced by the parameterization. Such methods, however, can be sen-
sitive to the large area distortion induced by conformal maps, which
may cause many triangles in the planar mesh to collapse, leading to
unstable numerical systems.

Vector field design. Vector derivatives are often required for
vector field design applications. One of the most prominent re-
quirements is that the resulting vector field is sufficiently smooth,
and this calls for a way to relate vectors in nearby tangent spaces.
On a triangle mesh, two classes of methods have been proposed to
quantify smoothness of vector fields. The first is to use discrete 1-

forms instead of vector fields, and rephrase the required operators
in terms of DEC [Fisher et al. 2007; Ben-Chen et al. 2010], making
use in particular of the Hodge Laplacian operator which provides
a measure of smoothness for vector fields in a similar way as the
Laplace–Beltrami operator does for functions. However, this lim-
its the scope of applications, since, for example, it is not clear how
to compute the directional derivatives of vector fields, and if vari-
ous operators (e.g., the symmetric part of the covariant derivative
operator) can be represented in DEC.

Another common method to measure smoothness of vector fields
is by prescribing a rule on every edge of the mesh, which allows
one to compare vectors on the faces across this edge. Perhaps the
most natural instance of this approach is to relate vectors on a pair
of neighboring triangles by “unfolding” them into a single plane.
Indeed, it is customary to refer to this process as the discrete Levi-
Civita connection, e.g., [Crane et al. 2010], and various comparison
rules have been proposed for different applications ([Polthier and
Schmies 1998; Crane et al. 2010; Pottmann et al. 2010; Lai et al.
2010] among others).

However, this general approach has several significant draw-
backs. First, these comparison rules only define directional deriva-
tives in the direction of the dual edges of the mesh, and it is not
obvious what the derivative should be in a general direction. If we
extend this approach to a general direction by following the discrete
geodesic in that direction, it is not clear what happens at a vertex.
Furthermore, the resulting definition is not stable: a small change
in the direction can change the following face on the geodesic
path, yielding a different vector and potentially a large change in
the derivative. Finally, in many cases the “unfolding” approach is
used to define discrete parallel transport, namely a way to transfer
a vector between faces on the mesh. Our method provides a more
general definition of parallel transport, by allowing to transport a
vector field on the flow lines of another vector field. Implement-
ing this using the unfolding approach would require numerically
integrating the direction vector field to generate the flow lines, and
then unfolding the triangles along the flow lines, which are both
algorithmically complicated and numerically sensitive operations.
Using our method we can compute discrete parallel transport sim-
ply using a matrix-vector multiplication.

Fluid simulation. The directional derivative of a vector field
with respect to itself appears in various PDEs, one of them is given
by the Euler equations for inviscid incompressible flow. Under-
standing the solutions to these equations is a research field in itself
(see e.g., [Batchelor 2000]), thus we only mention some of the more
relevant work in computer graphics, and specifically fluid simula-
tion on surfaces. Existing solutions include parameterization-based
techniques [Lui et al. 2005], and methods which assume a partic-
ular structure on the mesh, e.g., by working with subdivision sur-
faces [Stam 1999]. These methods have the drawbacks of introduc-
ing unwanted errors due to the distortion of the parameterization,
and the added complexity of converting a general triangle mesh to
a subdivision surface. Note that on a two-dimensional surface, the
Euler equations can be reformulated in terms of the vorticity of the
flow [Nitschke et al. 2012; Elcott et al. 2007], yielding a simpler
representation of the velocity through the stream function. How-
ever, vortex methods have several limitations, e.g., it can be more
difficult to set boundary conditions, and therefore in some cases
it is preferable to use a velocity based method. Finally, a method
which is tailored for inviscid and incompressible flows on triangle
meshes is provided in [Shi and Yu 2004]. This method is based on
semi-Lagrangian velocity advection on a triangle mesh, which re-
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Fig. 1. (left) The velocity U(t) and acceleration U ′(t) of a particle trav-
eling along a curve γ(t) on a surface, and the tangential component of the
acceleration ∇UU . (right) The parallel transport of V0 along γ is the vec-
tor field V (t) defined as the unique solution of the differential equation
∇γ′(t)V (t) = 0 with V (0) = V0.

quires tracing velocity flow lines and triangle unfolding, that suffer
from the drawbacks mentioned previously.

1.2 Contributions

Our main contribution is a simple yet efficient method for discretiz-
ing the Levi-Civita covariant derivative on triangle meshes. We fo-
cus on three aspects in our exposition: properties of the discretiza-
tion, the novel perspective offered by the operator approach, and
sample applications. Note, that since we provide a tool and not a
specialized application, we focus on proof-of-concept scenarios to
illustrate the possibilities associated with our discretization.

In the following sections we discuss our main contributions:

—The discrete formulation of the Levi-Civita covariant derivative,
including experimental convergence results (Section 3).

—A representation of the derivative as a linear operator that takes
vector fields to vector fields, whose algebraic properties have ge-
ometric meaning, e.g., exponentiation leads to an algebraic defi-
nition of parallel transport (Section 4).

—Several examples demonstrating the applicability of our discrete
derivative: vector field design and fluid simulation on surfaces
(Section 5).

2. DIRECTIONAL DERIVATIVES OF VECTOR
FIELDS

Our main goal is to discretize the directional derivative of a vector
field on a surface, also known as the Levi-Civita covariant deriva-
tive. We will first discuss the definition of such a derivative and
its properties in the continuous case. We provide a brief intuitive
introduction to the required concepts in this section. Readers well
versed in differential geometry can skim these and proceed to the
discrete treatment in Section 3. As we focus mostly on the geomet-
ric intuition behind the definitions, we refer the interested readers
to [Morita 2001, Chapters 5.2, 5.3] and [do Carmo 1992, Chapter
2] for the detailed treatment.

2.1 Notation

In the following we denote a surface byM ⊂ R3, upper case letters
(e.g., U, V,W ) denote tangent vector fields, and lower case letters
(e.g., f, g) denote real-valued functions. We denote by ‖ · ‖ an op-
erator which takes a tangent vector field and outputs a function of
its pointwise norms.

2.2 The Levi-Civita covariant derivative

To gain some intuition, first consider the motion of a particle in
the plane, R2. Its trajectory forms a path γ(t) ∈ R2, t ∈ R, and
its velocity γ ′(t) = U(t) ∈ R2 is a vector tangent to the path. Its
acceleration is the vector:

U ′(t) = lim
∆t→0

U(t+ ∆t)− U(t)

∆t
. (1)

For example, if the trajectory is a straight line and the velocity
is not constant, then U ′(t) will point in the direction of travel. If
the particle travels at constant speed, then the acceleration U ′(t)
is in a direction orthogonal to the path, since 〈U(t), U(t)〉′ =
2〈U ′(t), U(t)〉 = 0. Like the velocity, the acceleration vector lies
in R2.

Now, consider the same particle traveling on a curved surface
M ⊂ R3. Again, its trajectory forms a path γ(t) ∈ M, t ∈ R, and
its velocity vector U(t) is tangent to it. However, the acceleration
vector U ′(t) is no longer tangent to M and it decomposes into a
component normal to M , the normal acceleration, and a compo-
nent tangent to M , the tangential acceleration (see Figure 1, left).
Intuitively, since the particle is constrained to live on the surface
M , we can take an intrinsic point of view by considering only the
tangential part of the acceleration.

We can similarly compute the tangential component of the
derivative of any vector field V defined along a curve, and not nec-
essarily tangent to it, by considering the tangential component of
lim∆t→0

V (γ(t+∆t))−V (γ(t))
∆t

along the curve γ. Finally, using the
standard x, y, z coordinates in R3, this definition can be further ex-
tended to define the covariant derivative of a tangent vector field
V = (vx, vy, vz) on M in a specific direction given by a vector
field U on M :

∇UV (p) = Pp((DUvx,DUvy,DUvz)(p)), p ∈M, (2)

where Pp is the orthogonal projection on the tangent plane to M at
p and, for any function f , DUf = 〈∇f, U〉 denotes the derivative
of f in the direction of U . Notice that (DUvx,DUvy,DUvz)(p) is
a vector in R3, while ∇UV (p) is a tangent vector. The vector field
∇UV is known as the Levi-Civita covariant derivative of V with
respect to U [Morita 2001, p. 181].

2.3 Parallel transport

The definition of the covariant derivative is closely related to the
notion of parallel transport. Intuitively, parallel transport allows us
to “carry” a vector along a curve, such that it remains “parallel”
to itself. For example, the norm of a parallel-transported vector re-
mains fixed, and if the curve is a geodesic then the angle the vec-
tor forms with the tangent to the curve also remains fixed. This is
formalized using the idea that parallel transport should be the in-
tegral of the covariant derivative. Formally, given a curve γ(t) in
M and a tangent vector V0 at γ(0), the parallel transport of V0

along γ is defined as the unique solution of the differential equa-
tion ∇γ′(t)V (t) = 0 with initial condition V (0) = V0 [do Carmo
1992, p. 52], see Figure 1 (right).

Before we dive into the properties and the proposed discretiza-
tion of∇UV we would like to give some intuition as to the quantity
we are computing. Consider a surface of revolution, like the ones
shown in Figure 2, and a constant norm vector field U which is
orthogonal to the rotation axis (i.e., it “goes around” the surface).
Now consider a particle traveling on the flow lines of U at constant
speed. If the flow line is a geodesic, e.g., as the curves marked in
red, then traveling at constant speed would yield 0 tangential ac-
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UU1 1

U1 U2

UU2 2

|| ||UU1 1 || ||UU2 2

Fig. 2. Constant norm vector fieldsUi on a surface of revolution, and their
norm ‖∇Ui

Ui‖ and flow lines. Note that the norm is zero on the geodesics
(marked red), and that the flow lines are orthogonal to Ui, since they are
constant norm.

celeration. This is seen in the center figures, which show the color
coding of ‖∇UU‖. If the particle is not traveling on a geodesic,
it has to accelerate to keep “turning”. However, since the speed is
constant, the acceleration U ′(t) would be orthogonal to the direc-
tion of travel, as is seen in the figures showing the flow lines of
∇UU .

2.4 Properties

As we aim for a generic discretization of ∇UV , which works well
in various applications, we would like to assess the properties that
are required from such an object. For example, it has been shown
in [Wardetzky et al. 2007] that for the Laplace–Beltrami operator
and under mild conditions, there is no discretization which ful-
fills all the defining properties of the continuous operator. In our
case, the Fundamental Theorem of Riemannian Geometry guaran-
tees that if an operator fulfills the following five properties, then
it is the unique Levi-Civita covariant derivative [do Carmo 1992,
p. 50 to 55]. Hence, it is of interest to understand these properties,
and see whether they are achievable in the discrete case. To make
the discussion more concrete, we also denote for each property the
application in which it will be required.

Linearity. As any derivative it is a linear operator:

∇U (V +W ) = ∇UV +∇UW. (3)

Linearity allows us to represent the operator ∇V in a basis, and
construct various energies for vector field design.

Product rule.

∇U (fV ) = f∇UV + V DUf. (4)

Although we do not use this property directly in our applications,
the product rule is a fundamental characteristic of any derivative.

Locality. The derivative operator is “local” in the direction ar-
gument, namely it depends on the value of U at a point, and not
on its neighborhood. In other words, if U1 and U2 are vector fields
such that U1(p) = U2(p) for some point p, then (∇U1

V )(p) =
(∇U2

V )(p) for any smooth vector field V . This means that there
are no derivatives of U involved, and therefore this requirement can
be rephrased as linearity with respect to functions in the direction
argument:

∇fU+gW (V ) = f∇UV + g∇WV. (5)

This allows us to represent the operator ∇U in a basis, which we
use for computing parallel transport.

Metric compatibility. This property relates the derivative of a
vector field to the derivative of its norm. Similar to the case of a
particle in R2, where we had 〈V (t), V (t)〉′ = 2〈V ′(t), V (t)〉, in

general, DU 〈V, V 〉 = 2〈∇UV, V 〉. Note that together with linear-
ity, this implies for any pair of vector fields, V and W :

DU 〈V,W 〉 = 〈∇UV,W 〉+ 〈V,∇UW 〉. (6)

Symmetric Hessian. Finally, the last property relates to the sec-
ond derivatives of functions. In the Euclidean case, the Hessian
matrix is symmetric since partial derivatives commute. The gen-
eralization of the Hessian to the surface is the bilinear operator:
H(f)(U, V ) = 〈∇U∇f, V 〉 [do Carmo 1992, p. 142]. The last
property requires that this operator is symmetric:

〈∇U∇f, V 〉 = 〈∇V∇f, U〉. (7)

A consequence of this property is that [U, V ] = ∇UV − ∇V U
for any vector fields U and V , where [·] represents the Lie bracket
operator [do Carmo 1992, p. 27]. We use this operator to design
local parameterizations.

In the following section we investigate the discretization of the
covariant derivative. We first address the question of how vector
fields are represented on a mesh, and discuss our choices. Then
we consider the challenges for our choice of representation in the
discrete setting. We show that for piecewise constant vector fields,
under some mild conditions, it is not possible to define a discrete
version of the covariant derivative operator which is both linear
and fulfills the metric compatibility property. Finally, we propose
a simple approach that is based on the recently introduced multi-
scale discretization of the directional derivative of functions [Azen-
cot et al. 2013], and we demonstrate experimental convergence of
the previously mentioned properties under mesh refinement, when
both the vector fields and the functions are smooth.

3. DISCRETIZATION

3.1 Vector field representation

The definition of a derivative of a vector field is closely linked with
the way vector fields are represented in the discrete setting. One op-
tion is to use discrete 1-forms [Hirani 2003], which would require
using the flat and sharp operators for converting from vector fields
to 1-forms and back. Another option is to define a smooth atlas
on the mes through a parameterization of the 1-ring of each vertex
(e.g., as in [Zhang et al. 2006; Knöppel et al. 2013]), effectively
turning the mesh into a smooth manifold. If a vector field is contin-
uous and piecewise smooth in the atlas, it is possible to define first
weak derivatives. Further, recent work by [Ray and Sokolov 2013;
Myles et al. 2014] showed how a combinatorial data structure can
be used to represent vector fields while ensuring that field flow lines
do not merge.

While these options can be a potential starting point for discretiz-
ing the covariant derivative, they require a somewhat complicated
definition of a discrete vector field. We, on the other hand, choose
the most simple discretization of a tangent vector field, namely
piecewise constant on faces. Such vector fields occur often in ap-
plications. For example, scalar functions are often discretized as
piecewise linear on the vertices of the mesh, and their gradients are
piecewise constant vector fields. Furthermore, in mesh parameteri-
zation and mesh quadrangulation applications [Kälberer et al. 2007;
Bommes et al. 2009; Campen et al. 2012; Bommes et al. 2013;
Myles and Zorin 2013; Myles et al. 2014; Panozzo et al. 2014]
piecewise constant vector fields are often given as constraints for
controlling the alignment of the result. Hence, as we work directly
with piecewise constant vector fields, without requiring additional
conversions to 1-forms or atlas-based representations, our approach
is simpler, more intuitive and easier to implement.
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3.2 Notation

We represent surfaces with triangle meshes, given by M =
(V, E ,F), which denote the vertices, edges and faces, respec-
tively. Functions are represented as piecewise constant on the faces,
namely f : F → R, f = {f i, i ∈ F}. Tangent vector fields
are given as piecewise constant on triangles, namely U : F →
R3, U = {U i = (uix, u

i
y, u

i
z), i ∈ F}, such that U i is parallel

to the plane containing the i-th face. Discrete operators are rep-
resented with a “tilde”, e.g., D̃U : (F → R) → (F → R) is
the discrete directional derivative for functions and ∇̃U : (F →
R3) → (F → R3) is the discrete covariant derivative for vector
fields. In what follows, we assume to be given a function f and
tangent vector fields U, V .

3.3 Challenges in the discrete setting

As mentioned, we choose to represent vector fields as piecewise
constant on the faces. Such a representation, while simple and intu-
itive, leads to an inherent difficulty in defining a meaningful notion
of covariant derivatives, since intuitively the derivatives of piece-
wise constant vector fields should be zero at the faces.

Indeed, inside a triangle, taking derivatives of piecewise constant
vector fields is futile. Thus, a bigger patch must be taken into ac-
count. This, however, would require constructing a mechanism for
transporting vectors across triangles. Moreover, it is easy to see
that given the above discretization of vector fields and functions,
the product rule (Eq. 4) cannot hold exactly for every pair of func-
tions and vector fields. This, however, is true for many notions of
discrete derivatives.

Unfortunately, there exists a more fundamental difficulty in dis-
cretizing the Levi-Civita covariant derivative, which holds not only
for our discretization, but even if functions do not “live on the same
domain” as the vector fields, e.g., functions that are piecewise lin-
ear. In particular, even in this case, two of the defining properties
of the covariant derivative, namely linearity and metric compatibil-
ity, cannot be both satisfied exactly in the discrete setting, under
some mild conditions. To state this precisely, since the inner prod-
uct 〈U, V 〉 produces a function on the faces of the triangle mesh, to
allow discrete functions to live on a different domain we can use an
averaging operator A that takes functions on faces and produces
functions on vertices, edges or faces. We will assume that A is
linear, non-negative and maps constant functions to constant func-
tions. This leads to the following formulation of the metric compat-
ibility condition:

D̃XA(〈U, V 〉) = A(〈∇̃XU, V 〉+ 〈∇̃XV,U〉). (8)

Here D̃X is a directional derivative for functions with respect to the
vector field X . I.e., D̃X takes a function defined on some domain
(e.g., vertices, edges or faces) and produces a function defined on
the same domain. ∇̃XU is the covariant derivative for vector fields,
and the inner product is the standard inner product of vector fields
in R3. Under these conditions, we have the following result (proved
in the supplemental material):

LEMMA 1. If D̃X is a linear operator such that D̃Xf = 0 if
f is a constant function, and the covariant derivative for vector
fields is linear: ∇̃X(U1 +U2) = ∇̃XU1 + ∇̃XU2, then the metric
compatibility condition (Eq. 8) implies that D̃Xf = 0 for all f in
the range of A. I.e., D̃XA(h) = 0 for any h.

We note that although this lemma is stated for vector fields that
are constant on the faces, the proof is actually quite general and

can be adapted to other settings as well. Hence, as we cannot hope
to achieve the exact properties of the smooth covariant derivative,
we opt for a simple discretization which is based on the directional
derivative of the component functions, as given by equation (2). Us-
ing this definition, it is possible to show that all the properties of the
Levi-Civita covariant derivative (except the symmetry of the Hes-
sian) are all consequences of the product rule for functions [Morita
2001, p. 181]. Therefore, if the operator D̃Uf provides a better ap-
proximation to the product rule as the mesh resolution increases, so
we can expect that the operator ∇̃UV will give a better approxima-
tion to properties 3–6 under mesh refinement, although the metric
compatibility condition will never be satisfied exactly.

It has recently been shown in [Azencot et al. 2013] that it is pos-
sible to discretize the directional derivative of functions D̃Uf using
a multi-scale basis, such that the error in the product rule property
experimentally decreases with the increase in the mesh resolution.
We choose a similar discretization for the directional derivative of
functions defined on the faces of the mesh, and thus get experimen-
tal convergence of the product rule for the component functions
of the vector field. This in turn, in the convergence experiments
we performed, leads to experimental convergence of the covariant
derivative properties.

3.4 Directional derivative of functions

In the discrete differential geometry literature, functions are com-
monly discretized either as scalars on the vertices or as scalars on
edge midpoints, which are then linearly interpolated to the faces.
These are known as conforming and non-conforming linear ele-
ments, respectively. In both cases, the gradient operator is well-
defined as piecewise constant on the faces (see [Wardetzky 2006,
Chapter 2] for a full discussion).

Contrary to the common setting, our functions are defined on
faces, thus we need to extend the notion of a discrete gradient.
Given a function f , we define an averaging operator A, and de-
fine ∇̃f = ∇Af , where A averages the values of f to the edges,
and∇ is the discrete gradient for non-conforming elements. Poten-
tially, it is possible to define A such that it averages values to the
vertices instead of edges. However, thenAwill be of size |V|×|F|,
and therefore, its range will be smaller than its domain. Thus, there
will necessarily be two functions on the faces which are mapped to
the same function on the vertices. This will lead to difficulties, as
it can introduce non-zero vector fields, whose interpolation to the
vertices leads to a zero vector field. If, on the other hand, A aver-
ages to the edges, its size is |E| × |F|, and therefore the range is
larger than the domain, and this problem is potentially avoided. It
is easy to see that a positive local averaging operator A will have
an empty kernel in general, and in particular for any mesh that has
at least one odd degree vertex (see the proof in the supplemental
material).

Formally, we define the directional derivative for functions as:

D̃Uf = 〈∇Af, U〉, (9)

where Aij = wj/
∑
wk if i is an edge in face j, and Aij = 0,

otherwise. wj is the area of face j and the sum runs over the faces
which share the edge i. Now, as Af is a function on edges, its gra-
dient is piecewise constant per face, and has a standard definition
(see [Polthier 2005, Section 2.3]).

As mentioned previously, we represent the operator D̃U in a re-
duced multi-scale basis (the eigenfunctions of the Laplace-Beltrami
operator), as this enforces some smoothness on our vector fields.
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Fig. 3. Comparison of our discretization ∇̃UV with the analytic solution
for specific U,V on the sphere. We show the convergence graph for the
RMSE error for decreasing mean edge length, as well as a visualization of
the flow lines and norm of the computed ∇̃UV for the densest mesh.

3.5 Covariant derivative of vector fields

Our covariant derivative operator is based on the extrinsic defini-
tion presented in Eq. (2). Given the discretization for the direc-
tional derivative of functions on the faces, the covariant derivative
for vector fields follows easily:

∇̃UV (p) = Pp

(
(D̃Uvx, D̃Uvy, D̃Uvz)(p)

)
, p ∈M (10)

where V = (vx, vy, vz) and Pp is the projection operator onto
the tangent plane of M at p. As the directional derivatives of the
components of V are given on the faces, Pp is well defined.

To summarise, given two piecewise constant vector fields, U and
V , we first take the component coordinate functions of V , aver-
age them onto the edges, and compute the corresponding gradients.
These are piecewise constant on the faces, therefore their inner
products with U give us three real-valued functions on the faces.
We use those functions to construct a vector field in R3, and project
this vector field onto the faces.

To validate our discretization, we experiment with known vec-
tor fields U, V on the unit sphere and compare our result with the
expected result in the continuous setting. Figure 3 shows the re-
sult of this comparison, for meshes with decreasing average edge
length h. We show U, V , the analytic result ∇UV , and the result
of our computation ∇̃UV . Note that the convergence is polyno-
mial in h, and that for the most dense mesh the figures of the flow
lines and norm are almost indistinguishable from the ground truth.
We further demonstrate the convergence results in Figure 4, which
shows the log log plot of the RMSE error of properties 4–7, for
ellipsoid meshes with decreasing average edge length h. We addi-
tionally show the vector fieldsU, V,W and the functions f, g which
were used for the mesh with smallest edge length. The functions
f, g are the eighth and tenth eigenfunctions of the area weighted
cotangent Laplace–Beltrami operator and the vector fields U, V,W
correspond to eigen 1-forms 4, 3 and 1 of the Hodge Laplacian.
Note that the plot suggests a polynomial convergence rate in h,
where we denote by m the respective slope estimate. Furthermore,
given eq. (10), it is easy to verify that property (3) holds exactly.

4. GEOMETRY FROM LINEAR OPERATORS

In addition to computing the quantity ∇̃UV , it is often advanta-
geous to fix one of the vector fields, and consider the corresponding
operator on all possible inputs. For example, we can omit the direc-
tion U and consider the operator ∇̃V , which will provide some
information on the derivatives of V in all possible directions. This
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Fig. 4. The behavior of our discretization of the covariant derivative on the
properties 4–7 under mesh refinement, for the ellipsoid model. We show the
RMSE error of the left hand side vs. the right hand side of the equation for
decreasing mean edge length h. Note that the plot suggests a polynomial
convergence rate in h, where we denote bym the respective slope estimate.
We additionally show the functions and vector fields that were used for the
highest mesh resolution. See the text for further details.

point of view is useful, because it can uncover some hidden struc-
ture of V , in a global way. As a simple example, the singular vector
of ∇̃V which corresponds to the smallest singular value, will pro-
vide the directions in which V changes as little as possible.

This interplay between the algebraic properties of the operators
and the geometry of the vector fields they represent is quite useful
in practice, because it allows us to do global operations which are
traditionally local. For example, manipulating ∇̃V is instrumental
for vector field design, and ∇̃U allows us to easily compute parallel
transport.

4.1 Preliminaries

Matrix representation. While it is possible to analyze these
operators directly as abstract linear operators, it is more intuitive to
consider their matrix representation. Specifically, we assume that
we have a finite orthonormal basis of vector fields {Ψi, i ∈ 1, .., k},
i.e.,

∫
M
〈Ψi,Ψj〉 = 1 if i = j and 0 otherwise, and such that

the vector fields we are interested in can be represented as V =∑k
i=1 aiΨi (in Section 5.1 we will elaborate more on our choice

of basis). Now, any linear operator R from tangent vector fields to
tangent vector fields can be represented using a k × k matrix R,
whose (i, j) entry is:Ri,j =

∫
M
〈R(Ψi),Ψj〉. In the following we

will discuss the properties of the operators using their matrix repre-
sentations. For example, when we mention the operator transpose,
we refer to the corresponding matrix transpose.

Flow of a vector field. We will need the following definition.
The flow of a vector field U is a one-parameter family of maps
ΦtU : M →M for t ∈ R, such that the following holds:

d

dt
ΦtU (p) = U(ΦtU (p)), Φ0

U (p) = p.

Intuitively, the flow of a vector field encodes what happens to a
particle which starts at a point p ∈M , and its velocity is dictated by
the vector field at every point. Hence, it provides a way to recover
the trajectory of a particle from its velocity, and thus computing the
flow is also known as integrating the vector field.

4.2 The operator ∇V
Operator action: (∇V )(U) = ∇UV .

Here V is fixed, and we compute its derivative in some direc-
tion given as input. This operator is the extension to surfaces of
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Fig. 5. Approximate Killing vector fields computed by minimizing the
symmetric part of∇V .

the Jacobian operator of vector fields in Euclidean space, which is
simply the matrix of partial derivatives. Its algebraic structure pro-
vides us with information about the nature of the derivatives of V
in various directions. For example, as any linear operator, it can be
decomposed into symmetric and anti-symmetric parts:

∇V =
1

2

(
∇V + (∇V )T

)
+

1

2

(
∇V − (∇V )T

)
= KV +GV ,

where as discussed previously, we consider the operator as a k × k
matrix representation and thus can compute its transpose. The sym-
metric and anti-symmetric parts are also linear operators which take
tangent vector fields to tangent vector fields and have geometric
meaning.

Symmetric Part. The operator KV = 1
2

(
∇V + (∇V )T

)
is re-

lated to how much the flow ΦtV distorts the metric. Specifically, if
KV = 0, then V is called a Killing vector field (KVF), and its flow
ΦtV is an isometry for all t ([Petersen 2006], chapter 7.1). One such
example in the plane is V = (−y, x), whose flow is simply a global
rotation. Such vector fields are quite rare, and exist only on very
specific surfaces, however we can try to minimize ‖KV ‖2 for any
surface, yielding vector fields whose flow is close to an isometry.
Such vector fields are useful in geometry processing applications,
as they allow to generate texture and geometric patterns [Ben-Chen
et al. 2010].

We use this property to design vector fields which are approx-
imate KVFs, by solving a linear system of equations. Note, that
as opposed to previous work, we can pose the constraints directly
on the derivative operator, without requiring an indirect approach
through commutativity with the Laplace–Beltrami operator [Azen-
cot et al. 2013], or reformulation using DEC [Ben-Chen et al.
2010]. Figure 5 shows a few approximate Killing vector fields com-
puted this way. Interestingly, KVFs are also related to fluid flow on
surfaces, as they provide a steady state solution to the Euler equa-
tions (see Section 5). Furthermore, the Killing operatorKV plays a
role in the behavior of viscous fluids [Nitschke et al. 2012], which
we would like to investigate in future work.

Anti-symmetric part. The operator GV = 1
2

(
∇V − (∇V )T

)
encodes the failure of ∇V to be symmetric. We know from prop-
erty (7) that if V = ∇f for some function f then ∇V is symmet-
ric, hence it is possible to consider GV as the failure of V to be the
gradient of a function. Specifically, minimizing ‖GV ‖2 with some
additional conditions would provide vector fields which are “as gra-
dient as possible”. For example, if we require that ‖V ‖ = const
it is possible to show that the flow lines of V are geodesics and V
is a geodesic vector field (GVF) if and only if GV = 0 [Pottmann
et al. 2010], which can be useful in architectural geometry. In the
applications section we demonstrate how by constraining ∇V to
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Fig. 6. Parallel transport of a vector field U (left) along its own flow lines,
comparison to the ground truth on the sphere (middle). Note the 3 marked
singularity curves: the red curve is a geodesic, so vectors transported on
it preserve their orientation. The blue curves are two symmetric singular-
ity curves. The vectors transported on them rotate by π, so they reverse
their orientation. The transition between these singularity curves is smooth.
(right) Convergence graph of the error in the computed angle, and the final
result of our computation for the largest number of basis functions.

be symmetric, in addition to the smoothness induced by our frame-
work, we can, using a much simpler setup, achieve similar results,
even without adding the constraint on the norm of V . Furthermore,
our approach allows us to combine various constraints, e.g., that the
resulting vector field is symmetric with respect to some symmetry
map of the surface

Uniqueness. As we discussed, we can design vector fields V
which have certain properties, by posing constraints (e.g., symme-
try or anti-symmetry) on ∇V . This raises the question whether a
given ∇V completely encodes V , or there can be multiple vector
fields with the same∇V . We have the following:

LEMMA 2. For a closed oriented surface M , ∇UV = 0 for
every smooth U if and only if V = 0 or M is a flat torus.

Hence, if ∇V1 = ∇V2, then ∇U (V1 − V2) = 0 ∀ U , which
by the lemma implies that V1 = V2, yielding the uniqueness we
required.

4.3 The operator ∇U

Operator action: (∇U )(V ) = ∇UV .
Here the direction of the derivative is given by a fixed U , and we

compute the derivative of some vector field V given as input. This
operator is closely related to the directional derivative of functions,
which we denoted asDU . The scalar directional derivative operator
was recently used by Azencot and colleagues [2013] to represent,
analyze and design discrete vector fields. While this approach is
useful in certain applications, it is also limited, since the scalar di-
rectional derivative operator DU does not depend on the metric of
the surface, making the computation of metric-dependent opera-
tions such as the parallel transport of vector fields impossible with-
out additional structure. As we show below, the Levi-Civita covari-
ant derivative, acting on vector fields shares many useful properties
with the functional operator, such as uniqueness and decomposi-
tion, but also enables more applications including parallel transport
in a very compact and convenient manner.

Uniqueness. The operator ∇U encodes the vector field U
uniquely. Hence we can design a vector field U by defining con-
straints on∇U . We have:

LEMMA 3. Two smooth vector fields U and V are equal if and
only if ∇UW = ∇VW for all smooth vector fields W .

ACM Transactions on Graphics, Vol. 34, No. 3, Article 29, Publication date: April 2015.



8 • O. Azencot et al.

Γ       (U )U, 2π
~

U

Fig. 7. Parallel translation of U (top row) along the flow lines of U . Our
discrete parallel transport is robust to merging flow lines as is shown in the
result, Γ̃U,2π , (bottom row).

Symmetric part. The operator ∇U allows us to easily distin-
guish divergence-free vector fields, as those whose symmetric part
of∇U is zero:

LEMMA 4. Let M be a closed surface. A smooth vector field
U is divergence-free if and only if ∇U is anti-symmetric with
respect to the inner product on the surface. I.e., if and only if∫
M
〈∇UV,W 〉dx = −

∫
M
〈∇UW,V 〉dx for all smooth vector

fields V and W .

Parallel transport. The Levi-Civita covariant derivative, repre-
sented as an operator∇U is intimately related to parallel translation
along the flow lines of U . Suppose we have a vector field V and let
ΦtU (p) be the flow of U . Now, consider the operator ΓU,t, which
takes a vector field on M and returns a vector field on M , which
is defined as follows: ΓU,t(V )(p) is the vector obtained by parallel
transporting the vector V (ΦtU (p)) along the flow line from ΦtU (p)
to p. It is well-known (e.g., [do Carmo 1992, p. 57]) that the fol-
lowing relation between the operators∇U and ΓU,t holds:

∇U (V )(p) =
d

dt

(
ΓU,t(V )(p)

)∣∣∣
t=0

. (11)

Hence, the ∇U operator is the derivative of the backward parallel
transport operator at the point p. Now, if we consider the discrete
version of (11), i.e., replace∇U and ΓU,t with their discrete matrix-
based representations, ∇̃U and Γ̃U,t, respectively, it is easy to check
(see supplemental material) that Γ̃ given by:

Γ̃U,t = exp(t∇̃U ), (12)

where exp is the matrix exponentiation, is a solution. By defining
Γ̃U,t as in (12) we maintain the relation between the discrete paral-
lel transport and covariant derivative operators which exists in the
continuous case, and gain an easy to implement matrix-based oper-
ator.

This observation allows us to compute the parallel transport of
vector fields along the flow lines of other vector fields simply by
using the matrix exponential of ∇̃U . This is somewhat remarkable
since computing discrete parallel transport on discrete flow lines
directly would require us to numerically integrate the field U to
generate the flow lines, and then compute the discrete geodesic
curvature of these flow lines for the transport, e.g., as was done
in [Polthier and Schmies 1998]. This procedure can be cumber-
some, computationally heavy and potentially numerically unstable.
For example, the result may not even be a well-defined vector field
with multiple vectors in a single face, and some faces not contain-
ing any vectors.

Fig. 8. Given a vector field U (left), we construct local parameterization
by optimizing for V (middle) which minimizes the energy

∫
M ‖[U,V ]‖2 +

λ
∫
M ‖ 〈U,V 〉 ‖

2. The local coordinates are computed by flowing onU and
V , resulting in a texture mapped grid marked in blue (right).

On the other hand, when considering the Levi-Civita covariant
derivative as an operator acting on vector fields, and representing
it as a matrix in a basis, computing parallel transport becomes a
standard linear algebra operation involving only matrix exponent
and matrix vector multiplication. Note, that parallel transporting
a vector field U along its own flow lines is closely related to the
numerical scheme known as “semi-Lagrangian advection” in fluid
simulation [Shi and Yu 2004]. It is therefore possible that our par-
allel transport matrix operator could be used in such a setup. We
leave further investigation of this direction as future work.

In Figure 6 we compare the result of parallel transport done using
our approach to the ground truth on the sphere. We take a vector
fieldU = (0, z,−y), which rotates around the sphere, and compute
Γ̃U,2π(U), the parallel transport of U over itself for time t = 2π,
by taking exp(2π∇̃U )U . In this case, the flow lines are constant
latitude lines, and the result of the parallel transport has an analytic
expression [do Carmo 1976, p.243].

Figure 6 shows the vector field U (left) and the ground truth re-
sult (center). Our parallel transport operator uses a fixed number
of basis vectors, and the parallel transported vector field is non-
smooth, therefore we expect the result to improve with an increas-
ing number of basis vectors. This is indeed demonstrated in the
graph on the right. The graph shows the error in our computation
of the angle of the parallel transported vector field Γ̃U,2π(U) with
U , with respect to using a growing number of basis vectors ND .
The two figures in the graph show the flow lines and the norm of
Γ̃U,2π(U) for the largest number of basis functions. Interestingly,
the norm of the parallel transported vector field can be flown sepa-
rately using the flow of the operator for functions D̃U , which leads
to more accurate results. Note that the resulting norm and angles
are almost indistinguishable from the ground truth.

We provide further evaluation of our discrete parallel transport.
It is known that discrete flow lines of vector fields can in some
cases merge or split (e.g., [Szymczak and Zhang 2012], Figure 4).
In Figure 7 we demonstrate the result of parallel translation of U
(top row) along U . Notice that although the flow lines of U might
split (see the zoomed area, top, right), our result, Γ̃U,2π(U), pre-
serves its smooth behavior.

While matrix exponentiation is itself a difficult problem, and the
result can be inaccurate for large matrices [Moler and Van Loan
2003], note that in our case the matrices are relatively small (on
the order of 300), as the vector field is represented in a multi-scale
basis. In our implementation we used Matlab’s expm function, and
did not encounter any issues. Furthermore, to compute the parallel
transport there is no need to compute the full matrix exponent, but
only the matrix vector product exp(2π∇̃U )U , for which more sta-
ble and efficient methods exist [Al-Mohy and Higham 2011]. It is
possible that more basis vector fields would be required to represent
complex vector fields with a large number of singularities, which
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Ours [Pottmann et al. ‘10]

Fig. 9. Approximate geodesic vector field design. We seek a vector field V
which minimizes the energy ‖∇V −(∇V )T ‖2, which yields V that is close
to a geodesic vector field (top left). The Oloid model has zero Gaussian
curvature everywhere except on the creases, hence when it is flattened the
flow lines should yield straight lines (bottom left). Compare with the result
of [Pottmann et al. 2010](right). Our results are comparable, while our setup
is considerably simpler, and allows for combination of constraints.

are common in parameterization and quadrangular remeshing ap-
plications. In such cases, it might be instrumental to investigate our
operator in the hat basis, which will lead to a sparse representation,
for which methods such as [Al-Mohy and Higham 2011] are still
applicable. We leave further study in this direction for future work.

4.4 The operator [U, ·]
Operator action: [U, ·](V ) = ∇UV − ∇V U . Given two vector
fields U, V , consider the problem of constructing local texture co-
ordinates (u, v) such that the iso-v and iso-u lines align with U
and V , respectively. Given p ∈M , one naı̈ve approach would be to
flow along U from p and sample the flow line at fixed constant in-
tervals. Then, starting from the resulting sampled points, flow along
V and sample again. The union of the sampled points forms a grid.
Of course, we could reverse the order and flow first on V and then
on U , however, we expect to obtain the same set of sampled points.
Formally, this requirement means that the flows of U and V should
commute.

The operator [U, V ], which is known as the Lie bracket or Lie
derivative of U and V , computes exactly this property—the lack of
commutativity of the flows ofU and V . Specifically, it is possible to
construct a local parameterization as described previously around a
point p ∈M if and only if U(p), V (p) form a basis for the tangent
plane and [U, V ] = 0 (see e.g., [Kolar 1993, Theorem 3.17]).

Using the operators∇U and∇U we can represent [U, ·], and use
it for vector field design. For example, given a vector field U , we
can construct a matrix representation of [U, ·], and compute its sin-
gular vectors. Since [U,U ] = 0, U is always the singular vector
corresponding to the 0 singular value. However, the next singular
vector V minimizes

∫
M
‖[U, V ]‖2, and would give us the best vec-

tor to couple with U to get a parameterization. Note, that we can
easily add additional terms to the energy, e.g.,

∫
M
‖ 〈U, V 〉 ‖2, if

we want U and V to be orthogonal.
Figure 8 demonstrates this for the computation of a local pa-

rameterization. We are given U (left), and we minimize the energy
E[U,·](V ) =

∫
M
‖[U, V ]‖2 + λ

∫
M
‖ 〈U, V 〉 ‖2. The resulting vec-

Fig. 10. Trade-off between as-gradient-as-possible vector field constraints
and symmetric vector field constraints, with the symmetry constraints
weighted higher in the image on the right.

tor field V (middle) together with U is used to build the local co-
ordinates using the flow method described previously. This yields
a textured mapped grid (right, shown in blue). Note, that the vector
fields U, V are orthogonal but do not have the same norm. Hence,
simply rotating U by π/2 would not have given the same texture
coordinates, as the flows would not necessarily commute.

5. APPLICATIONS

Until now we have concentrated on the properties of the various
operators we can derive from the Levi-Civita covariant derivative,
and provided some proof-of-concept applications for the geometric
quantities it allows us to compute. In this section, we first discuss
some implementation details and limitations, and then discuss two
concrete applications of this machinery: designing tangent vector
fields and simulating fluid flow on surfaces.

5.1 Implementation details

Choice of basis. For our basis for D̃U , we chose the first Nf
eigenvectors of the DEC based 2-form Hodge Laplacian [Hirani
2003]. For ∇̃U , ∇̃V and all operators acting on vector fields, the
basis is given by the firstND eigenvectors of the DEC based 1-form
Hodge Laplacian [Fisher et al. 2007]. To represent our operators
as matrices in the basis, we first convert the 1-forms to piecewise
constant vector fields (as in [Fisher et al. 2007], equation (4), where
we sample at the barycenter of the triangle), then apply the operator
to the basis elements, and project the result back onto the basis.

Limitations. We define the covariant derivative using the em-
bedding in R3, however, a classical and fundamental property of
the covariant derivative in the continuous case is that it is intrinsic,
i.e., it does not depend on this embedding ([Morita 2001, p. 181]).
In the discrete case, we no longer maintain this property. For rigid
deformations, there exists a trade-off between invariance and dis-
cretization error. If we use a small number of basis functions, the
component functions are smooth, but we lose invariance to rigid
transformations. However, the error introduced by the rigid trans-
formation decreases polynomially in the number of basis functions.
If, on the other hand we use the full basis in equation (9), the op-
erator will be invariant to rigid transformations (see supplemental
material for the proof). For isometric deformations the averaging
operator A introduces some error even when using the full basis
(as it causes averaging of vectors on faces which undergo different
rotations), and for a truncated basis we again have an error which
decreases polynomially. Despite this limitation, we believe that the
additional simplicity we gained by using the embedding is worth-

ACM Transactions on Graphics, Vol. 34, No. 3, Article 29, Publication date: April 2015.



10 • O. Azencot et al.

Fig. 11. Designing smooth vector fields by finding vector fields which
minimize the energy ‖∇̃V ‖2.

while, especially in applications which use a single non-deforming
mesh.

5.2 Vector field design

As discussed in the previous sections, by using the covariant deriva-
tive operators, we can pose various constraints to design tangent
vector fields with some prescribed differential properties. Since the
operators ∇̃U and ∇̃V are linear, each of the optimization prob-
lems that we formulate can be solved efficiently by solving a linear
system, or by computing a singular value decomposition.

As-Gradient-As-Possible vector fields. We first consider
minimizing the energy ‖∇̃V −(∇̃V )T ‖2, which quantifies the anti-
symmetric part of ∇̃V . As mentioned in Section 4.2, this energy
will be zero if V is a gradient field. Furthermore, [Pottmann et al.
2010] showed that if additionally the norm of V is constant, then
the energy will be zero only if V is a vector field whose flow lines
are geodesics, also known as a geodesic vector field (GVFs).

While we do not impose the additional constraint, our results on
the Oloid model, as shown in Figure 9, are comparable to the results
of [Pottmann et al. 2010], when weighing the edges according to
their mean curvature is not taken into account.

Finally, as we work in the generic framework of functional op-
erators, it is straightforward to combine this energy with additional
constraints in a similar manner to [Azencot et al. 2013]. For exam-
ple, we can require the vector field to be symmetric with respect
to some symmetry map provided for the surface. By weighing dif-
ferently the constraints we can allow the user to explore multiple
solutions (see Figure 10) which may be difficult to achieve using
other frameworks.

As-Killing-As-Possible vector fields. As mentioned previ-
ously, vector fields V for which ∇̃V is anti-symmetric are vec-
tor fields whose flow preserves the metric, also known as Killing
vector fields (KVFs). These are useful for pattern generation, as

Ours [Knöppel et al. ‘13]

Fig. 12. Our smooth vector field (left), compared to the one obtained by
the method of [Knöppel et al. 2013] (right).

shown e.g., in [Ben-Chen et al. 2010]. By minimizing the energy
‖∇̃V + (∇̃V )T ‖2, we can construct vector fields that are as close
as possible to KVFs, as we demonstrate in Figure 5.

Smooth vector fields. As our last design goal we consider the
task of computing as smooth as possible vector fields, similarly to
what was done in [Knöppel et al. 2013]. One way to characterize
such vector fields, is by minimizing the Dirichlet energy ‖∇̃V ‖2.
Figure 11 shows an example of two vector fields computed this
way, and Figure 12 compares the vector field computed using our
method (left), with the one computed by the approach of [Knöppel
et al. 2013] (right). Note that the resulting vector fields are com-
parable in terms of smoothness. Compared to the ground truth on
the unit sphere, the Dirichlet energy obtained by [Knöppel et al.
2013] is more accurate than ours (1.0017 vs. 0.9515, where the an-
alytic solution is 1), potentially due to energy loss incurred by our
projection on the basis of vector fields. Furthermore, the method
by [Knöppel et al. 2013] is more general than ours, as it can handle
N-RoSy fields in addition to vector fields.

To conclude, while there exist other specialized methods for pos-
ing many of the design constraints mentioned here, e.g., [Azencot
et al. 2013; Pottmann et al. 2010; Knöppel et al. 2013; Ben-Chen
et al. 2010] our setup is unique in that it is simple, it allows us to
pose all of these constraints, and generate a large variety of vector
fields, since we have direct access to the∇V and∇U operators.

5.3 Fluid simulation on surfaces

As our last application, we consider the problem of simulating the
behavior of an incompressible flow on a curved surface. A fluid can
be described as a time varying velocity field U(t), whose behavior
is governed by the Navier–Stokes equations [Taylor 1996]. We dis-
cuss here only incompressible (divergence-free) inviscid (viscosity-
free) flows, for which the defining equations are known as the Euler
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Fig. 13. (top) A few frames from a periodic solution of the Euler equations
on the sphere. Note that the vorticity (color coded) is globally rotated, as
expected. See the text for details. (bottom, left) The relative kinetic energy∫
M ‖U(t)‖/

∫
M ‖U(0)‖ during the simulation. Note that it is periodic, and

remains within 98% of the original energy. (bottom, right) A histogram of
the vorticity, for the first (blue) and last (red) frames. Note, that the his-
togram is preserved as expected.

equations [Taylor 1996], eq. (1.10):

∂U

∂t
= −Pcurl(∇UU), (13)

where Pcurl is the orthogonal projection onto the space of diver-
gence free vector fields.

Using our discrete definition of the covariant derivative, it is
straightforward to compute the time-varying velocity U(t) of a
flow, given some initial conditions. We implemented a very simple
pipeline, using a black box time integrator (Matlab’s ode45 [Dor-
mand and Prince 1980]). One iteration consists of computing ∇̃UU
using our operator, followed by projection onto the space diver-
gence free vector fields by solving the Poisson equation ∆s = −ω,
where ω is the vorticity function given by the curl of U , projected
onto the space of functions spanned by our basis. The change in U
is now given by the gradient of s rotated by π/2 in each face. We
use the operator from [Polthier and Preuss 2003] for computing the
curl of a vector field.

Despite the simplicity of this approach, we found that in most
cases it was enough to simulate interesting flows, for which we
know the analytic solution or expected behavior. We demonstrate
some example in the accompanying video for the simulation of the
flows. We stress that this is a proof-of-concept of the applicability
of our operator to fluid simulation on surfaces. We leave further
tuning, as well as incorporating a more sophisticated time integrator
as future work.

Steady state solutions. If U is a Killing vector field, or U =
J∇φi, where φi is an eigenfunction of the Laplace–Beltrami op-
erator, then U(t) = U is a steady state solution to equation (13)
(see [Majda and Bertozzi 2001] page 46, equation (2.13), and also
the supplemental material for a simple proof). Hence, as a sanity
check, we compute the average of ‖Pcurl(∇̃UU)‖/‖U‖ for such
a vector field U . The result can be considered an indicator to the
stability of our method, and was on the order of 10−4 for the unit
sphere.

Periodic solution on the sphere. On the sphere there ex-
ists a periodic time varying solution, given by: U(t) = U0 +∑
i ai(t)J∇φi, whereU0 is a Killing vector field, and φi are eigen-

Fig. 14. A few frames from a solution of the Euler equations on the torus
for a co-rotating vortex pair.

Fig. 15. Three frames from a fluid flow simulation showing a posi-
tive/negative vortex pair on a surface.

functions of the Laplace–Beltrami operator corresponding to the
same eigenvalue. Furthermore, the curl of the velocity field (its
vorticity) ω(t) is advected by this flow isometrically, namely a
pure rotation. We are not aware of a reference for this solution
in the literature, and thus provide the proof in the supplemental
material. Figure 13 (top) shows a few frames from such a simu-
lation on the unit sphere, where we took φi to be an eigenfunc-
tion in the third group of spherical harmonics. We show the color
coding of the vorticity function, which is indeed advected as an
isometry. Figure 13 (bottom right) shows the relative kinetic en-
ergy

∫
M
‖U(t)‖/

∫
M
‖U(0)‖ during the simulation. Note, that the

energy itself exhibits periodic behavior, and remains within 98% of
the original energy. This indicates the stability of our method, espe-
cially since we used a straightforward black box time integrator for
all simulations. Finally, Figure 13 (bottom left) shows a histogram
of the vorticity values, for the first and last frames of the simulation.
Note that the histogram remains fixed, as expected.

Co-rotating vortex pair. On a plane, a pair of point vortices
(namely singular points where all the vorticity is concentrated)
spinning in the same direction should rotate around each other
([Saffman 1992], page 117). We generate a similar configuration
on a torus, where we take the initial vorticity ω0 to be constant at
all vertices except two vertices vi, vj , where we take ω0 to be 1.
The constant is set such that

∫
ω0 = 0, and then ω is projected

onto the span of our basis functions. Figure 14 shows a few frames
from this simulation (see also the accompanying video). Note that
the vortices rotate as expected. One limitation of our method is that
it is not circulation preserving, as is for example the method in [El-
cott et al. 2007]. This is visible in the torus simulation, as some of
the vorticity is lost due to numerical dissipation. We leave the ex-
ploration of efficient methods to overcome this limitation as future
work.

Counter-rotating vortex pair. Similarly to the previous ex-
periment we take two point vortices rotating in opposite direc-
tions. In the plane such a configuration translates in a straight line
([Saffman 1992], page 117), and a similar behavior is demonstrated
on the back of the frog model, in Figure 15 and in the accompany-
ing video. The stability of our method is exhibited by the fact that
the vortex pair travels intact the whole length of the frog model.
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N-vortex structures. Here we take a more complicated config-
uration of vortices. The first includes two pairs of counter-rotating
vortices which collide, where the expected behavior is that they
continue in a direction orthogonal to the original direction after col-
lision This is shown in Figure 16 and in the accompanying video
on the teddy bear model. The second configuration includes 3 co-
rotating vortices forming an equilateral triangle, where the flow
should rotate the three vortices as a single unit ([Newton 2001],
page 78). We reproduce this behavior as can be seen in the video.
Note that while two of the vortices merge during the process, they
separate again at the end of the flow, returning to a configuration
similar to the original one.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel discretization for the Levi-Civita
covariant derivative of vector fields on discrete surfaces, which has
various appealing properties. First, it exhibits experimental conver-
gence of the five defining properties of the derivative in the contin-
uous case. Second, it can be represented as a linear operator acting
on tangent vector fields, thus allowing us to harness tools from lin-
ear algebra, such as matrix exponential, to perform geometric oper-
ations which were otherwise harder to achieve, e.g., parallel trans-
port of a vector field along the flow lines of another vector field.
Finally, we demonstrated the applicability of our discretization to
various geometry processing tasks, such as local parameterization,
vector field design and fluid simulation.

We believe there is much more left to explore, as we only gave a
taste of the possible applications of our formulation. First, the co-
variant derivative appears in many PDEs on surfaces, and it is inter-
esting to apply our discretization to additional problems. For exam-
ple, it is possible to compute the covariant derivative of the normal
vector field, thus yielding a novel discretization of the shape oper-
ator. Second, our parallel transport approach can potentially be ap-
plied to fluid flow simulation, to yield a more stable exponential in-
tegrator, and the Killing operator can be used for simulating viscous
flow. Furthermore, we would like to investigate additional opera-
tors derived from the covariant derivative, such as the connection
Laplacian, which can potentially be used for vector field smooth-
ing. To conclude, we believe that our discrete covariant derivative
will inspire future work that tackles additional challenges in vector
field processing, thus providing a stepping stone towards a com-
plete framework for vector calculus on discrete surfaces.
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MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. 2002.
Discrete differential-geometry operators for triangulated 2-manifolds. In
Proc. VisMath. 35–57.

MOLER, C. AND VAN LOAN, C. 2003. Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM review 45, 1,
3–49.

MORITA, S. 2001. Geometry of differential forms. American Mathematical
Society, Providence, R.I.

MYLES, A., PIETRONI, N., AND ZORIN, D. 2014. Robust field-aligned
global parametrization. ACM Trans. Graph. 33, 4 (July), XX:1–XX:14.

MYLES, A. AND ZORIN, D. 2013. Controlled-distortion constrained global
parametrization. ACM Trans. Graph. 32, 4 (July), 105:1–105:14.

NEWTON, P. K. 2001. The N-vortex problem: analytical techniques. Vol.
145. Springer.

NITSCHKE, I., VOIGT, A., AND WENSCH, J. 2012. A finite element ap-
proach to incompressible two-phase flow on manifolds. Journal of Fluid
Mechanics 708, 418.

PANOZZO, D., PUPPO, E., TARINI, M., AND SORKINE-HORNUNG, O.
2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM
Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4.

PETERSEN, P. 2006. Riemannian geometry. Springer, New York.
POLTHIER, K. 2005. Computational aspects of discrete minimal surfaces.

Global theory of minimal surfaces 2, 65–111.
POLTHIER, K. AND PREUSS, E. 2003. Identifying vector field singularities

using a discrete Hodge decomposition. Visualization and Mathematics 3,
113–134.

POLTHIER, K. AND SCHMIES, M. 1998. Straightest geodesics polyhedral
surfaces. Math. Vis., 391398.

POTTMANN, H., HUANG, Q., DENG, B., SCHIFTNER, A., KILIAN, M.,
GUIBAS, L., AND WALLNER, J. 2010. Geodesic patterns. ACM Trans.
Graphics 29, 3.

RAY, N. AND SOKOLOV, D. 2013. Tracing cross-free polylines oriented
by a n-symmetry direction field on triangulated surfaces. arXiv preprint
arXiv:1306.0706.

SAFFMAN, P. G. 1992. Vortex dynamics. Cambridge university press.
SHI, L. AND YU, Y. 2004. Inviscid and incompressible fluid simulation

on triangle meshes. Computer Animation and Virtual Worlds 15, 3-4,
173–181.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 121–128.

SZYMCZAK, A. AND ZHANG, E. 2012. Robust morse decompositions of
piecewise constant vector fields. Visualization and Computer Graphics,
IEEE Transactions on 18, 6, 938–951.

TAYLOR, M. 1996. Partial differential equations, Vol. III.
WARDETZKY, M. 2006. Discrete differential operators on polyhedral

surfaces–convergence and approximation. Ph.D. thesis, Freie Universität
Berlin.

WARDETZKY, M., MATHUR, S., KÄLBERER, F., AND GRINSPUN, E.
2007. Discrete Laplace operators: no free lunch. In Symposium on Ge-
ometry processing. 33–37.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field design
on surfaces. ACM Trans. Graph. 25, 4 (Oct.), 1294–1326.

ACM Transactions on Graphics, Vol. 34, No. 3, Article 29, Publication date: April 2015.


