
given a basis for $\mathbb{R}^{3}$,

then $R$ is simply a $3 \times 3$ matrix (operator),
manipulating $R$ with linear algebra tools yields:

axis of rotation

sequence of rotations

This research was done in collaboration with Maks Ovsjanikov and Frederic Chazal. This research was supported by the Israel Science Foundation (ISF) grant n ${ }^{\circ} 699 / 12$ and has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n ${ }^{\circ} 303511$.

Operator Representations in Geometry Processing

Omri Azencot
Advisor: Asst. Prof. Miri Ben-Chen
Technion - Israel Institute of Technology azencot@cs.technion.ac.il
directional derivative of a function

$$
D_{V}: L^{2}(M) \rightarrow L^{2}(M)
$$


with a suitable choice of basis

and $D_{V}$ becomes a $k \times k$ operator:
then, with linear algebra machinery we get:

directional derivative of a vector field

$$
\mathcal{D}_{V}: L_{x}^{2}(M) \rightarrow L_{x}^{2}(M)
$$


we take a smooth basis, thus

analysis of $\mathcal{D}_{V}$ leads to geometric constructs:

can be easily extended!

you can also try it... what is your favorite geometric operator?

