

This research was done in collaboration with Maks Ovsjanikov and Frederic Chazal. This research was supported by the Israel Science Foundation (ISF) grant n° 699/12 and has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° 303511.

Operator Representations in Geometry Processing

Omri Azencot

Advisor: Asst. Prof. Miri Ben-Chen Technion - Israel Institute of Technology azencot@cs.technion.ac.il

directional derivative of a function $D_V: L^2(M) \rightarrow L^2(M)$

with a suitable choice of basis

and D_V becomes a $k \times k$ operator:

then, with linear algebra machinery we get:

analysis of \mathcal{D}_V leads to geometric constructs:

geodesic vector field parallel transport along ${\it V}$

can be easily extended!

smooth vector field

you can also try it ... what is your favorite geometric operator?